1988 ACM Scholastic Programming Contest

Problem A: Air Traffic Control

A scrvice offered by the FAA (Francinc's Airplanc Alarms) uscs radar 1o tell airplanc pilots when they arc in danger
of passing 100 closcly 10 another airplane in flight. For this problem you are (o wrilc a program (o simulate this
radar.

To simplify things, you may assume that the airspacc under consideration is above a planar Earth, ceniered on an
origin with coordinates (0, 0). The positive y-axis lics due north, the positive x-axis to the cast. All coordinatcs arc
in milcs, all airspecds in miles per hour, and all altitudes in fect (one mile = 5280 fect). You may also assumc that
airspeed equals ground speed (meaning no wind).

The input 1o the program will consist of up o twenty lincs, onc linc for cach airplanc in the airspace. Each line
contains numbcrs, scparaicd by onc or more blank spaces, giving the following values in this ordcr:

o flight number (inwcger)

* altitude (rcal)

o flight heading (rcal, in degrees, 0 = north, 90 = cast, cic.)

« position of the airplanc at the start of the simulation (two rcal numbers, the x-coordinate and then the
y-coordinalc)

o airspeed (real)

You may assume that all planes maintain constant airspeed, altitude, and heading throughout the simulation.

A near miss is defined 10 occur when two plancs asc less than or equal to five miles from cach other, measured only
horizontally (ignore altitude in computing this distance), and simultancously differ in altitude by lcss than or equal
10 1000 fest. Your program should deiect all ncar misscs between any two airplancs. For cach ncar miss, you
should print the ime (in scconds since the beginning of the simulation) when you detectcd the ncar miss, and the
flight numbers, positions (coordinates), and altitudes of the two planes involved.

Your radar antenna rotates once very 20 seconds, so it is possible that two plancs would be within the ncar miss
limits for just a few seconds while your antenna is pointing the other way. This is acceptable! The data sct provided
was designed 1o have only near misses that continue for at least 20 seconds, so it docsn't matier which way your
antenna is poinied when the simulation begins. Note also that the ime you report for a near miss docs not have the
be the exact second of the beginning of the nearmiss; it might be as much as 20 seconds later and still be correct.
Similarly, the location you report may be anywhere within the near miss zonc, depending on when you detect the
incident

Each near miss should be reported only once. It is possible for the two plancs still 1o be within the ncar miss limits
20 seconds later when your radar sees thein again. Do not report the same (wo planes again.

Your simulation should end after three hours.

1988 ACM Scholastic Programming Contest

Problem B: Candlepin Bowling Scoring

Candlepin bowling, although using the same
bowling, dilfers i (the arc ed
and bottom), the balls arc much smaller (about the size of a grapefruit), and it is much more d
scorces than it is in Ten Pin bowling (championship class Ten Pin bowlers often average aro d 210 per
whercas championship class Candlepin bowlers usually average around 130 per game). This later difference
be a particularly surprising onc to the uni icd, given that a Candlepin bowler is allowed three balls per fra
whercas in Ten Pin bowling only two balls per frame arc allowed.

For this problem, you are 1o produce a program that will compute the score of Ci
frame consists of a maximum of three balls. Fr

n bowling games. Each
¢s arc scored according 1o the following rules:

1.1 the first ball thrown in a frame knocks down all en pins (called a suike and marked as an X), then
the score for the frame is cqual o 10 plus the number of pins knocked down by the next two balls
thrown in the following frame(s). When a strike is thrown, no other balls are thrown in that frame,
since all the pins have alrecady been knocked down (sce #4 below for final frame exception).

2.1f all ten pins arc not knocked down by the first ball, but arc all knocked down by the combination of
first and sccond balls thrown in a frame (callcd a spare and marked as a /), then the score for the frame
is 10 plus the numbeg of pins knocked down by the next ball thrown (that is, the first ball thrown in the
next frame). When a spare is made, no third ball is thrown in the frame, since all the pins have already
been knocked down (sce #4 below for final frame exception).

3. If all ten pins are not knocked down as a result of the first bali (a strike) or first and sccond balls (a
sparc), a third ball is thrown, and the score for the frame is simply the number of pins knocked down
by all three balls.

4. Since the 10th frame is the final {ram
complete strikes or spares roll
balls thrown, whercin:

¢ (0 use pin counts from subseyque
Therclore, the 10th frame always cor

s o
stsof 3

a. if the first ball of the frame is a strike, the pins are resct (ien new pins are set up, as at the
beginning of each frame) and the bowler throws two more balls; in the case of another strike,
the pins are reset again and the bowler throws one more ball at them; the score for the frame is
10 plus the sum of the pins knocked down by the following (wo balls;

b. if the first ball fssnot a strike, butthe combination of the first two balls is a spare, the pins are
reset and the bowler throws one ball at them; the score for the frame is 10 plus the number of
pins knocked down by the third ball;

c. il ncither a strike nor a spare is rolled u he score for the i

number of pins knocked down by all three b

is sunply the

Your program is o read from a data file the results of each ball thrown in an arbitrary number of bowling games and
print the score for each game. Each data line will represent the results of each ball thrown for a single game. Dau
ilems representing a game's results of balls thrown are in even-numbered columns, separated by blanks in odd-
numbered columns. A data line with ** in columns 1 and 2 indicales the end of the data file.

Valid data items, representing the results of the balls thrown in a game are 0, 1, 2,3,4,56,7,89, A,/ and
X. (Note that this programs accepts data as it would be entered on a bowling scoresheet; that is, if the first bul
frame werc a strike, an X, not 10, would be marked; if the first and second balls were 8 and 2 for a spare, 8 / would
be marked, not 8 2.) One slight variation will be employed, however, so that a single characier will be capable of
representing any possible scoring circumstance, that being an A will be the scoring of a 10 count on the third ball of
a frame in which the first two balls had 0 pin counts. (Note that if the first ball of a frame had a 0 pin count, und all
ten pins are knocked down with the sccond ball, 0/, indicaling a spar, is scored.)

A sample of a data line representing a valid game would be:

: R0 R, : : ,,w niﬂn&..aaiwﬁa? f:n .&

b2 R g«r? b éwz. D S 5 R 1 B (e e o e o
= il ._ TRE ?Ww_g,sﬁgzﬁs%x&...%3,35;&3?%9%&?45&3?

e e g | yeine xss%sa&iﬁ. .
SR R R o m;%fiﬂ giagﬁ e

T ?.33 ﬁ:%%% e
§eﬁ§§$sﬁﬁtﬁuﬁwﬁhﬂ“

g b %
%»%i% s £§§§i§

2 “ Ry R il ., ; ?u.%@a&.» § a:mxzﬁawﬁu, ﬁ *iwﬁ% ﬂz.g:ur .

18R YC [oS Coa ._,_..%x%ﬁ %.Eéia i:é%.., _,__ﬂéé _

XxX8/7213506/17/522x9/XxXx8

Translating into framcs, and scoring would yicld:

X 8/ 721 350 6 / 7/ 522 X 9/ X X 8
20 17 10 8 17 15 9 20 20 28
or a cumulative scoring of:

20 37 47 55 72 87 96 116 136 164

Assuming that the first data linc 1o be processed was represenied by the sample above, and that there were ngames
scorcd, your output should be presenied as follows:

GAME #1: 164
GAME #2: xxx

GAME #3: xxx
END OF SCORING

You may assume that cach linc 1o be scored is a valid combination of cotrics.

1988 ACM Scholastic Programming Contest

Problem C: Monkey Business

The syntax of the monkey language is quic simple, yet only monkcys can speak it without making mistakes. The
Iphabet of the lunguage is (a, b, ¢, d, #) where # represents | space. The compleie grammar of the monkey

languagc is:

<sealence> = <word> | <scatence> # <word>

<word> ::= <syllable> | <syllable> <word> <syllable>
<syllable> = <plosive> | <plosive> <stop> | a <plosive> |a <stop>
<plosive> ::=c <slop>a

<stop> z=bld

As dircctor of monkey intclligence, you have just been given a machinc-readable version of a transcript of a
conversation among scveral important monkeys. There is at least onc and possibly morc spics in this group of
monkeys and you have been assigned the task of deermining which monkeys arc spics and which arc nol. You arc
going 1 do this by detecting which monkeys are not speaking proper monkey language.

The lincs of dialogue from the monkey conversation will be in the input data file. Each linc of dialoguc will have
the name of the monkey speaker (from 1 1o 15 characters long), a colon (*:'), and then the sentence spoken by that
monkey. Each line will have the monkey name start in column 1. There will be no blanks (spaces) on a line except
possibly in the spoken sentence. There will be at most 60 characiers in a monkey's sentence. Each monkey's
sentence will terminate with a non-blank character (thus no input line has trailing blanks). There will be at most 25
unique monkeys in the conversation, and, of course, each monkey may spcak morc than once. The end of the
ranscription will be designated by end of file.

Your output should contain a list of the “spics™ in their order of appearance in the conversation, as well as the first
sentence they spoke that gave them away. After you list the spies, then list the "ok" monkeys in their order of
appearance in the conversation. The format of your outpul is unimportant as long as the two lists, the names, and
the seniences needed are clearly identified.

1988 ACM Scholastic Programming Contest

Problem D: Multicomputer Processor Status

Assuinc that you arc the system administrator for an MIMD (multiple instruction, muluple dat) muli
composcd of S0 processing clements. Euch processor (node) within the architecture is limited 10 exccuting a single
job (i.c. no multiprocessing) but may spawn tasks for ncighboring processors 10 solve.

Support softwarc is practically noncxisicat on this sysiem. Howcver, a node may be quericd 1o determine the
particular job it is exccuting and whcther or not the job was spawncd from another node. Your assignment
writc a simple uility program that will display the current status of the sysiem, indicating what jobs arc running
the nodes on which they arc cxcculing. Any Lasks spawncd by the job should also be indicated.

The input to your program will consist of scveral lines, cach containing a pair of intcger values and a character
string. There will be a single blank scparaling the first integer from the sccond, and a single blank separating the
sccond integer from the character string. The first intcger value indicates which node is responding to the s 1
status query. The sccond integer value indicates which node (if any) spawned the task currently exccuting on the
node indicated by the first integer value. Parcnt nodes and idie nodes will respond with a value of 0 for the sccond
intcger value. The character string (with a maximum length of 35 characters and a minimum length of 1 character)
is the name of the exccuting job. The name will be blank on responses rom spawned nodes and will contain & 1
onc but no morc than 35 spaces. You may assume all input is correct. Nodes will respond in a random order.

The output from your program will consist of two single spaced lines for cach job currently exccuting in the sysiem,
followed by one blank linc. Jobs should be printed in increasing order of root node numbers. The first hne will be
the name of the job and the sccond line will be the hicrarchy of nodes cumently used by the job. The root node
should be printed first.

If a root node spawned any children, then the root node should be followed by an arrow --> (lwo hyphens and
greater than sign) and the children spawned should be enclosed within braces () and scparawed by scmicolons.
Child nodes should be printed in increasing order among other children at the same level. If a child node spawned
any children, then its children should be prinied in the same manner. Exact spacing of output is not required.

For example, given the following system configuration of exccuting jobs and spawncd tasks, your program r
produce the desired results as indicated from the specified input. (Note that the exact order in which cach nod
status is received is undetermined.)

Job 1: s - Job 2: Job 3:

Particle and Cell Sim Flux Corrected Transport IDLE
1 5 12
/\ { NN\
3 4 72 11 6
7N
8 5 10

Input Desired Quiput
9 4 Particle and Cell Sim
25 1 == (3 == (8)G & ==ty 0)
12 0 IDLE
311 Flux Corrected Transport
1.5 5 --> { 2; 6: 7: 11}
10 4
1 0 Particle and Cell Sim IDLE
83 12
65
5 0 Flux Corrected Transport
41
11 5

1988 ACM Scholastic Programming Contest

Problem E: Pluviometrics

Afier the bottom dropped out of the hand-blown bud vase market, your cmployer purchased 100,000 of them for a
pittance, ntending 10 add a linc of designer rain gauges 0 its peegaw catalog. After finding out that cach vase has a
shape uniquely its own, they handed you the problem of how (0 place the scale marks on them.

The marks on the rain gauge should be at the correct locations to indicaic 0.1 inch, 0.2 inch, ctc. Each 0.1 inch
represents a volume of rainfall cqual 1o 0.1 inch times the arca of the opening at the top of the gauge.

The vases all have a single bulge at the base and flare toward the lip end. Since they were spun during blowing,
wheir insides are surfaces of revolution about an axis perpendicular to a (lat base. A tedious empirical swdy (in
which, of course, lcast squares gave you [its) produced the result that the interior surfaces of the bud vascs can be
described closcly enough by a function of four parameters that are casily determinced for cach vase. The parameters
arc:

h the height in inchies measured from the inner surface of the bottom-

d the diametcr in inches of that round bottom

a,b (0 <a< 1,0 <b) parameiers that describe the shape of the vase through the function r(x), which
gives the radius of the vase x inches above the inner bottom:

d . 2x X
rx) = : Vi o+ asin—— + v‘_
Values of these four parameters will be determined for each vasc and placed in a single record in the order h, d, a, b
as fixcd point quantitics scparated by at lcast onc blank. FFor cach such record, the required program must print these
parameicrs (suitably identificd) and a table showing the height nches above the inside base) at which each tenth
of an inch gradation in rainfall amount must be marked. The calculated height must be given o the nearest
hundredth of an inch. Meniscus cffects and refraction may be ignored. To avoid conflusing thc mark makers, no
height exceeding h may appear.

Possibly helpful facts:
r = 3.14159265
Volume of a cylinder of radius r and height h is nrkh
— sintdi=-cost+c -

Example:
h = 3.375 d = 0.715 a = 0.520 b = 0.133 4

Line
0.11
0.21
0.30
0.38
0.46 h
0.54
0.62
0.69
0.77
0.84
0.91

F]
. o B
-
E)

r(s)

000000 OCOO
—~OWVWDNAUL D WN -

o
=
=S

1988 ACM Scholastic Programming Contest

Problem F: Pretty Printing

The declaration section of many procedural programming languages is casicr (o read it the information is nicely fo
columns, but it is difficult for a programmer to enter the program in this format. For this problem you are 10 write 4 program 1
will format a specific kind of declarations

The input data will consist of up to 50 lines, cach of which contains (in this order):

o an identificr (the name of a variablc)

e a colon character (:)

o u type specification, which may be a single identificr or an expression such as array (1. 10) of integer

» a scmicolon character (;)

o an optional comment (not all lincs will have commients), which begins with two consccuuve hyphens (--) and conuhues 1o
the end of the linc

Blank spaces may or may not be present between any two of the above items. Blank spaces may or may not be present between
the comment delimiter (—-) and the first word of the comment. ldentificrs may contain uppercase or lowcercase & phabe
characters, numerals, and the underscore character (). A type specification will not contain a scmicolon or a comment delimeter,

The output from your program should be the same declarations, formatied as follows:

o All variable name identifiers begin in column 3 of an output linc.

o The colons are all aligned ventically in the sccond column afer the longest variable idenificrs.

o All types begin in the second column after the colons and are formaited cxaculy as given in the input.

o All scmicolons follow immediatcly after the types, without intervening blank spaccs.

o All comment delimiters (--) are aligned vertically in the third and fourth columns afier the scmicolon after the longest type
specification.

o If the reformatting causes a comment Lo extend beyond column 80 on the line, the comment must be broken into more than
onc line. The line breaks cannot occur in the middle of words unless a single word is 1o long for the allotied space (in
which case the line break my appear anywhere in that word). Each additional comment linc must have its own dehmiter (--)
aligned with all the others. No printed line can go beyond 80 columns.

 All comment delimiters are followed by exactly one blank space and then the first (or next) word of the comment. The only
exception is a comment that is totally empty (comment delimiter followed by no other characters).

For example, below are shown a declaration section before and afler pretty printing.

o

L]
code : codeblock;
ident:type2;--here is a nice long comment to cause some continuation lines here.
lines : integer;
linenum : integer;--line number counter for loop

maxidentlen : integer:

dummy : integer;
list H array [1..100) of real ; --this is a big list of things

code : codeblock;

ident : type2; -- here is a nice long comment to
-- cause some continuation lines
-- here.

lines : integer;

linenum : integer:; -- line number counter for loop

maxidentlen : integer;

dummy : integer;

list : array [1..100] of real; -- this is a big list of things

g TR L bR 2 o j ik B T a«eaiim «gpf¢qq¢¢§§ qss,ﬁ.g. it

e e s Y o (R P Suqinwg ¢ yopedent B L £ ey
i ST e sz izt) : O Uy peewlsat ' g ,.,b‘waco.&gn ﬁiﬁa.& aﬂ?
5 ., ; 3 ! , .., . i e «.&é AT ¥ _ﬂﬁ%ﬂ' .. i 1) i : i v

b Ay o R el e \ nEQ

‘ i ggsziipés?,%ig%?

bl ,m,.g GRS . R zﬁsggigﬁ%gg? thbe e s sy ©

ol rygau% *%ggaﬂiﬁ

. ﬁ?ﬁ@%ﬁgﬁﬁ?‘«%a@%aﬁ%ﬁ%ﬁﬁ o

s e e |1 1A icca %ﬁsi# - sqanacumnga .‘é.iﬁoénﬁt eﬁﬁ,is«
bl iR ol o S S N R g NG T SRR b o g aip i it e

) wﬂ% ﬁz!.a §£ *ﬁaii 8&3%,333?%2@2%

U A e etp0us me g wlien ATTA 1 B e
R iﬂ e %wﬁiﬁﬁ i 5%&.“5:%% b

= __,,.,U. e Qaasg iiigxiﬁsgﬁgggg

. o ba&faﬁ-,ragf‘&igﬁ.ﬁ gn&%ﬁ:ﬁas!;g%,

s ,.,.gf#?%ﬁm , ,
ey B (1 R e S Rt LY &s%«,,%%%z%.

_,wqaﬁa ."._iu.'x.., N.,._,.g. ”.‘u.em,n!..na.nt: d,.- iﬂ«aw 5 ﬁan
o w,#na%uw..,.‘a, iRk o ¥ f&%ﬁvw.,:

. b SR et ,,.ie! (s ‘
it AT B AN i e Exmnn g.&%uﬁa‘%ﬂg.
«._3& I . R MR T S 3,..- Wy Told ot

s L e ,ﬁ, 3ren | 0% .s& Cdii 15t i i

.,#.. :

éwit%éiai%%% 1 SO0 s e e o o aﬁiﬁ, A
. SOuTLE PRt i nogmun 3 oy wi oA i
mﬁ»g!gy?;g!ﬁegﬁ%n%gﬁngam ggﬁﬁsﬁ)s :

e cousest () 00 e (i mON 0L UG COMMUE | JNIGLE Wl o

i o of Gepnim: NG Sl - Sl
%ﬁaiiﬂs&‘ “zﬁs%m zuai?ise eﬁnﬂtx.ﬁwsg, s

ié% SRS R _&a:as

fami fia ﬁa}éa b :ﬁﬁﬁ g RS

1988 ACM Scholastic Programming Contest

Problem G: Tree Recovery

Three standard traversals of binary trecs are preorder, inorder, and postorder. Assuining all the nodes of a binary
rec contin unique data, an inorder waversal and a postorder traversal compleicly detenmine the shape and
informadon in a wee. For example, an inorder traversal of ABCDEFG and a postorder traversal of ACBFGED

. D
w\ /m
L
C
-

—.n.

Wriie a program that has as input the inorder and postorder raversals of binary wees and produces the preorder
traversals of the wees. Each node in the rec contains a single printable nonblank character. A waversal can
therefore be represenied as a characier string (as in the first paragraph above).

G

Input for your program consists of a text file organized into pairs of lines. The first line of each pair conwins the
postorder traversal of a ree and the second line contains the inorder traversal of the same tree. You may assume
that there are an even number of lines in the filc and that each line contains no blank or nonprintable characters.
You may also assume that the pairs of lines are consistent, i.e. given the nth line, where n is odd, the a+1st line
contains the inorder traversal of the wee whose postorder traversal is on the preceding line.

Output should consist of an echo of the input as well as the preorder traversal of each tree. All output must be well
identificd and easy 1o read. .

.

For example, the trec shown above would be represented in the data as:

ACBFGED
ABCDEFG

For this data, your program should print:

vo-ao.nn.n traversal:

ACBFGED
Inorder traversal:

ABCDEFG
Preorder traversal:

DBACEGF

1988 ACM Scholastic Programming Contest

Problem H: Window Manager

A window manager is a sct of routines that control the appearance of multiple windows on a display screen. For tus
problem you will simulaic a few of the capabilitics of a window manager. The specifications for the simulation are
described below.

The screen and the windows are measured in characters rather than pixcels. The screen is 80 characters wide and 24
characters high, with rows numbered 1 through 24 from the top and columns numbered | through 8O from the lefi.

A window is simulatcd by putting its code character inlo every character position of the window.
Windows may overlap cach other. Only those parts of i
conceptually in front of another) wil

concept L ol another)

by onc or morc other windows.

ndow not obscured by a higher window

1}
cr. It is possible for a window 10 be

w
CL

4
he code chara

When a new window is created, it is the highest or fronumost window, so it is completely visible.

When an cxisting window is deleted, any parts of windows previously obscured by that window become visible
again.

When the user clicks the mouse at any visible point in a window, that cntire window is moved 1o the highcst
(frontmost) level. Other windows stay in their same order rclative o cach other,

When the user gives a cycle command, the bouom or backmost window is moved (o the op (frontmost), even if that
window was previously totally obscurcd. Other windows stay in their same order relative 10 cach other.

The simulation begins with no windows, so the cntire simulated screen is blank. However, for purposes of this
simulation, when the screen is displayed, print a period character (".") for each blank on the screen. This will make
it casier 10 see where the windows actually are relative o the whole screen.

Your program should read commands from the input file and perform the requested operation. There are four kinds
of commands:

1. New Window C d: This cc d contains a w in the first character position on the input line,
followed by four integers representing, respectively, the column of the upper left comer of the new window,
the row of the upper ‘lefe comer, the namber of characters in a row of the new window, the number of
characters in a column. Following these integers is one or more blanks and then a non-blank code character,
which is the character to display for this window. Upon reccipt of this command, your program should
create the new window.

.M Click C d: This cc d contains a m in the first character position on the input linc,
followed by the column and row, respectively, of the mouse position at the time of the click. Upon receipt of
this command, your program should perform the action described above, provided that the mouse position is
within a window.

3. Delete Window Command: This command contains a d in the first characier position, then one or morc
blanks, then a non-blank character that is the code character of the window to be deleted. Upon receipt of
this command, your program should delete the window, as describcd above.

4. Cycle Windows C d: This co d contains a c in the first character position. Upon reccipt of this
command, your program should cycle the windows as described above.

Each command, including its various paramcters, constitutcs one line of the input data. At least onc blank scparatcs
cach two adjacent parameters. The data will contain only valid commands. It will not Lry (0 put two windows with
the same code character on the screen at the same time. It will not give invalid locations or sizes for new windows.
It will not give invalid coordinates for a mouse click. It will not ask you to dclete a nonexistent window.

Your program should display the entire screen only once, after all commands have been executed.

e g s BoBiosoRs caeip EONRN Broegui e
“bor 0, et 6 DO o IR R0 S PN MBRE W 90 B ke e
] IS U Y YO Y TRDE (UE LU 6O BRVE o sRitUpES cERsIeLY

Sy s OIS IR CCMTIRI (38 AR SUATARE (X, A0 RISKY 1ORE L D NG

o 8 10, 4 ARG e DAK OF ORI I PN B 600 B conmast O

epaness SRpR (5 i R0 (e beusiai ipons)” : , .
ERR WO 407 T COVSIE. W tollie SIBHIDIS SUBPY CIPRBIT | hekatar Gry

o
g i) ﬁ ; /f:.ﬁw
e ;,
a8 oo

sty mssun 29g 4 lan

ik o -l Gl

BAGREIS (0 1005 $REosLd

AR PO #&Ei?,?ﬁﬁwﬁigﬂwﬂﬁ&iﬁ&

(e b e onass Wiy BOMORGSL KBRGIRUY O DIV (R Wy bsenenn W Beoiioy

erwee s s asken] 51 VECTRMG W 5 S st B VORLGED:
Jot SRR BT ,n« Loty . 0 K
oy R T R e e i ictegn o v

oo Do Spomis SR (19 GHALE FASEU TTH CHT SGTCN g DS UEE FReG RN € ning

55 g 0 Rio JRARIG TN Y0 7 SUONED U [S0 LT MO 10 910 OMEY 200 M _
i ity G PRI W (S et e S MeeY 10 0n Btas oy RIS DR B0 K LS AIGERT

SAT L DN SR (LR U i OV GG KR COEIIE o s . £ 0 £ g T AR

§§§ s e it v a§§§5 el e ;
A7 IR MR COMMERL | F0M8 COlRLIRA DO ¥ € R)Y T s el Bopian rrboy ottt i e

IR 1§ D60 RO LTSN Y ¥ 5k OB CYTSCINL O [R0, 1 sy rn.n.? £

LU o e o IR A0S0 GAETE IR MmO’ G PEE BRIk
| SN N O L SOOI SO R N S SPRLICIRG BOMIN” KU 0N OE e

BB il sl &)] , Fat Sl
YRR P TG GOV BT S0 SS9BSC TR O (96 RODSI. BORION 85 TR (VNS OL (Y8 SHK [\Dow eted o

sl DT e TR COMMIRING | 10 CORMER SOUTIIDY 0 W0 9 (R ASRIST. bovinets on o wbay e
: L SRR ERmmMON G Sy e
T At R R SN 2 Qebed (o G e | YBIR SEEEN B e Coen Kok Seofen Hmy

C g o k ABBA Jy Eeie® OR T ERUIRINS 9 9 100801 (1 0 O S PR O

BRI Y 0 OB SIS SR R BRLE i 0Nl O M G R UTRGRR 030 (onl p SR iU
'y b gt i dlete welisasuoel e neld e oinin 31.&53 o L W VoK AgkTe
17065 HUPROS CRUGIG . L SEMBRIG, IR S Ml R Wi Lpara Gomion ol G bR et

o v

b, o B 165 AR 1 7 A 1 W o T SO SReCU | R I O P,

T e 0 s il O OO DR 5 HEYRING B G MG A : !
e st T St B iy G o Dy Cn ol [, 7 g G gl G s g ey Hee

L osveie PRTUI MO B MR RY e WL STy mSTE P PR aUmeRer! i Bealvarel ot e B

i s Sagamemr FtT GRRCTLT CHIN M S e Y S G T SN Al
oo i, e 1 A M0TS CORMMING T 108 DAt R ERIRE et) GRG0 S by (gt Saty IR |

e P R R R L A | : i
AP P A SR ot WRONIE I WUN AGrvt Dese 6 e B R Mkt G aitaeg f a R

sl . i ,
At e Gy saonea 1 g’ ._..; Vot 0 o it e SRR e R e patigt: et esipl
ii en,... a!ag 7 OB 1 1 R PSS iz S R ¢ e R :

o N omm o e oy mTgaRe ., b A
! n«%wiﬁg CE T o il T e e e R e e

%,r&% Sarmeh paktE TR OURCT (it THnRE reatn DL R i, iROF DR e e i e

'y i 18 g 9A Doy 1a o ksi.a_ ity AR ety T i%sr% :

L it iR s e bl ARy T (00 o e W Loriien IR | AR e 1 B
i U i petet i R A S TIRSS Y SRR S e YO Lo R S (i EEUN AR o i S

Tiompeur Yeom st Wenmn & o o as s iopisinh BUs mi o e TR sk {05 e R R ey
¥ «ﬁég 08 SRR R T L o s B i I e il . g e e B

BRIt ,,.ka_t._&?é E,,.;xwmy; i

203 VU popopmi yuoliinan® o outes.

