
2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem A
Self-Assembly

Time Limit: 3 seconds

Automatic Chemical Manufacturing is experimenting with a process called self-assembly. In this pro-
cess, molecules with natural affinity for each other are mixed together in a solution and allowed to spon-
taneously assemble themselves into larger structures. But there is one problem: sometimes molecules
assemble themselves into a structure of unbounded size, which gums up the machinery.

You must write a program to decide whether a given collection of molecules can be assembled into a
structure of unbounded size. You should make two simplifying assumptions: 1) the problem is restricted
to two dimensions, and 2) each molecule in the collection is represented as a square. The four edges of
the square represent the surfaces on which the molecule can connect to other compatible molecules.

In each test case, you will be given a set of molecule descriptions. Each type of molecule is described
by four two-character connector labels that indicate how its edges can connect to the edges of other
molecules. There are two types of connector labels:

• An uppercase letter (A, . . . , Z) followed by + or −. Two edges are compatible if their labels have
the same letter but different signs. For example, A+ is compatible with A− but is not compatible
with A+ or B−.

• Two zero digits 00. An edge with this label is not compatible with any edge (not even with another
edge labeled 00).

Assume there is an unlimited supply of molecules of each type, which may be rotated and reflected. As
the molecules assemble themselves into larger structures, the edges of two molecules may be adjacent
to each other only if they are compatible. It is permitted for an edge, regardless of its connector label, to
be connected to nothing (no adjacent molecule on that edge).

Figure A.1 shows an example of three molecule types and a structure of bounded size that can be assem-
bled from them (other bounded structures are also possible with this set of molecules).

Figure A.1: Illustration of Sample Input 1.

ACM-ICPC World Finals 2013 Problem A: Self-Assembly 1



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Input

The input consists of a single test case. A test case consists of two lines. The first contains an integer n
(1 ≤ n ≤ 40 000) indicating the number of molecule types. The second line contains n eight-character
strings, each describing a single type of molecule, separated by single spaces. Each string consists of
four two-character connector labels representing the four edges of the molecule in clockwise order.

Output

Display the word unbounded if the set of molecule types can generate a structure of unbounded size.
Otherwise, display the word bounded.

Sample Input 1 Sample Output 1

3
A+00A+A+ 00B+D+A- B-C+00C+

bounded

Sample Input 2 Sample Output 2

1
K+K-Q+Q-

unbounded

ACM-ICPC World Finals 2013 Problem A: Self-Assembly 2



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem B
Hey, Better Bettor

Time Limit: 4 seconds

“In the casino, the cardinal rule is to keep them playing and to keep them coming back. The
longer they play, the more they lose, and in the end, we get it all.”

(from the 1995 film Casino)

Recent recessions have not been kind to entertainment venues, including the gambling industry. Com-
petition is fierce among casinos to attract players with lots of money, and some have begun to offer
especially sweet deals. One casino is offering the following: you can gamble as much as you want at the
casino. After you are finished, if you are down by any amount from when you started, the casino will
refund x% of your losses to you. Obviously, if you are ahead, you can keep all of your winnings. There
is no time limit or money limit on this offer, but you can redeem it only once.

For simplicity, assume all bets cost 1 dollar and pay out 2 dollars. Now suppose x is 20. If you make 10
bets in total before quitting and only 3 of them pay out, your total loss is 3.2 dollars. If 6 of them pay
out, you have gained 2 dollars.

Given x and the percentage probability p of winning any individual bet, write a program to determine
the maximum expected profit you can make from betting at this casino, using any gambling strategy.

Input

The input consists of a single test case. A test case consists of the refund percentage x (0 ≤ x < 100)
followed by the winning probability percentage p (0 ≤ p < 50). Both x and p have at most two digits
after the decimal point.

Output

Display the maximum expected profit with an absolute error of at most 10−3.

Sample Input 1 Sample Output 1

0 49.9 0.0

Sample Input 2 Sample Output 2

50 49.85 7.10178453

ACM-ICPC World Finals 2013 Problem B: Hey, Better Bettor 3



This page is intentionally left blank.



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem C
Surely You Congest
Time Limit: 10 seconds

You are in charge of designing an advanced centralized traffic management system for smart cars. The
goal is to use global information to instruct morning commuters, who must drive downtown from the
suburbs, how best to get to the city center while avoiding traffic jams.

Unfortunately, since commuters know the city and are selfish, you cannot simply tell them to travel
routes that take longer than normal (otherwise they will just ignore your directions). You can only
convince them to change to different routes that are equally fast.

The city’s network of roads consists of intersections that are connected by bidirectional roads of various
travel times. Each commuter starts at some intersection, which may vary from commuter to commuter.
All commuters end their journeys at the same place, which is downtown at intersection 1. If two com-
muters attempt to start travelling along the same road in the same direction at the same time, there will be
congestion; you must avoid this. However, it is fine if two commuters pass through the same intersection
simultaneously or if they take the same road starting at different times.

Determine the maximum number of commuters who can drive downtown without congestion, subject
to all commuters starting their journeys at exactly the same time and without any of them taking a
suboptimal route.

Figure C.1: Illustration of Sample Input 2.

In Figure C.1, cars are shown in their original locations. One car is already downtown. Of the cars at in-
tersection 4, one can go along the dotted route through intersection 3, and another along the dashed route
through intersection 2. But the remaining two cars cannot reach downtown while avoiding congestion.
So a maximum of 3 cars can reach downtown with no congestion.

Input

The input consists of a single test case. The first line contains three integers n, m, and c, where n
(1 ≤ n ≤ 25 000) is the number of intersections, m (0 ≤ m ≤ 50 000) is the number of roads, and c
(0 ≤ c ≤ 1 000) is the number of commuters. Each of the next m lines contains three integers xi, yi, and
ti describing one road, where xi and yi (1 ≤ xi, yi ≤ n) are the distinct intersections the road connects,
and ti (1 ≤ ti ≤ 10 000) is the time it takes to travel along that road in either direction. You may assume

ACM-ICPC World Finals 2013 Problem C: Surely You Congest 5



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

that downtown is reachable from every intersection. The last line contains c integers listing the starting
intersections of the commuters.

Output

Display the maximum number of commuters who can reach downtown without congestion.

Sample Input 1 Sample Output 1

3 3 2
1 2 42
2 3 1
2 3 1
2 3

2

Sample Input 2 Sample Output 2

4 4 5
1 2 5
1 3 4
4 2 5
4 3 6
4 4 4 4 1

3

ACM-ICPC World Finals 2013 Problem C: Surely You Congest 6



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem D
Factors

Time Limit: 2 seconds

The fundamental theorem of arithmetic states that every integer greater than 1 can be uniquely repre-
sented as a product of one or more primes. While unique, several arrangements of the prime factors may
be possible. For example:

10 = 2 · 5 20 = 2 · 2 · 5
= 5 · 2 = 2 · 5 · 2

= 5 · 2 · 2

Let f(k) be the number of different arrangements of the prime factors of k. So f(10) = 2 and f(20) = 3.

Given a positive number n, there always exists at least one number k such that f(k) = n. We want to
know the smallest such k.

Input

The input consists of at most 1 000 test cases, each on a separate line. Each test case is a positive integer
n < 263.

Output

For each test case, display its number n and the smallest number k > 1 such that f(k) = n. The
numbers in the input are chosen such that k < 263.

Sample Input 1 Sample Output 1

1
2
3
105

1 2
2 6
3 12
105 720

ACM-ICPC World Finals 2013 Problem D: Factors 7



This page is intentionally left blank.



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem E
Harvard

Time Limit: 10 seconds

Picture from Wikimedia Commons

The term “Harvard architecture” applies to a
computer that has physically separate memories
for instructions and data. The term originated
with the Harvard Mark I computer, delivered by
IBM in 1944, which used paper tape for instruc-
tions and relays for data.

Some modern microcontrollers use the Harvard
architecture – but not paper tape and relays!
Data memory is organized in banks, each con-
taining the same number of data items. Each
data-referencing instruction has a byte offset f
to a bank, and a bit a that is used to select the
bank to be referenced. If a is 0, then bank 0 is referenced. If a is 1, then the value in a bank select
register (BSR) identifies the bank to be used. Assume each instruction takes the same time to execute,
and there is an instruction that can set the BSR’s value.

For example, suppose there are 4 banks of 8 bytes each. To access location 5, either use a single
instruction with a = 0 and f = 5, or set the BSR to 0 in one instruction and then use an instruction with
a = 1 and f = 5. The first approach is faster since it does not require setting the BSR.

Now suppose (with the same memory) the location to access is 20. Only one approach will work here:
execute an instruction that sets the BSR to 2 (unless the BSR already has the value 2) and then use an
instruction with a = 1 and f = 4.

A program is a sequence of operations. Each operation is either

• a variable reference, written as Vi, where i is a positive integer, or

• a repetition, written as Rn <program> E, where n is a positive integer and <program> is an
arbitrary program. This operation is equivalent to n sequential occurrences of <program>.

Your problem is to determine the minimum running time of programs. In particular, given the number
and size of the memory banks and a program to be executed, find the minimum number of instructions
(which reference memory location and possibly set the BSR) that must be executed to run the program.
To do this you must identify a mapping of variables to memory banks that yields the smallest execution
time, and report that execution time – that is, the number of memory references and BSR register settings
required. The BSR’s value is initially undefined, and changes only when an instruction explicitly sets its
value.

ACM-ICPC World Finals 2013 Problem E: Harvard 9



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Input

The input consists of a single test case. A test case consists of two lines. The first line contains two
integers b and s, where 1 ≤ b ≤ 13 is the number of memory banks and 1 ≤ s ≤ 13 is the number of
variables that can be stored in each memory bank. The second line contains a non-empty program with
at most 1 000 space-separated elements (each Rn, Vi, and E counts as one element).

You may assume the following:

• In a repetition Rn, the number of repetitions satisfies 1 ≤ n ≤ 106.

• In a loop operation Rn <program> E, the loop body <program> is not empty.

• In a variable reference Vi, the variable index satisfies 1 ≤ i ≤ min(b · s, 13).

• The total number of variable references performed by an execution of the program is at most 1012.

Output

Display the minimum number of instructions that must be executed to complete the program.

Sample Input 1 Sample Output 1

1 2
V1 V2 V1 V1 V2

5

Sample Input 2 Sample Output 2

2 1
V1 V2 V1 V1 V2

6

Sample Input 3 Sample Output 3

1 2
R10 V1 V2 V1 E

30

Sample Input 4 Sample Output 4

4 1
V1 R2 V2 V4 R2 V1 E V3 E

17

ACM-ICPC World Finals 2013 Problem E: Harvard 10



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem F
Low Power

Time Limit: 4 seconds

You are building advanced chips for machines. Making the chips is easy, but the power supply turns out
to be an issue since the available batteries have varied power outputs.

Consider the problem of n machines, each with two chips, where each chip is powered by k batteries.
Surprisingly, it does not matter how much power each chip gets, but a machine works best when its two
chips have power outputs as close as possible. The power output of a chip is simply the smallest power
output of its k batteries.

You have a stockpile of 2nk batteries that you want to assign to the chips. It might not be possible
to allocate the batteries so that in every machine both chips have equal power outputs, but you want
to allocate them so that the differences are as small as possible. To be precise, you want to tell your
customers that in all machines the difference of power outputs of the two chips is at most d, and you
want to make d as small as possible. To do this you must determine an optimal allocation of the batteries
to the machines.

Consider Sample Input 1. There are 2 machines, each requiring 3 batteries per chip, and a supply of
batteries with power outputs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. You can, for instance, assign the batteries
with power outputs 1, 3, 5 to one chip, those with power 2, 4, 12 to the other chip of the same machine,
those with power 6, 8, 9 to the third chip, and those with power 7, 10, 11 to the fourth. The power
outputs of the chips are 1, 2, 6, and 7, respectively, and the difference between power outputs is 1 in both
machines. Note that there are many other ways to achieve this result.

Input

The input consists of a single test case. A test case consists of two lines. The first line contains two
positive integers: the number of machines n and the number of batteries per chip k (2nk ≤ 106). The
second line contains 2nk integers pi specifying the power outputs of the batteries (1 ≤ pi ≤ 109).

Output

Display the smallest number d such that you can allocate the batteries so that the difference of power
outputs of the two chips in each machine is at most d.

Sample Input 1 Sample Output 1

2 3
1 2 3 4 5 6 7 8 9 10 11 12

1

Sample Input 2 Sample Output 2

2 2
3 1 3 3 3 3 3 3

2

ACM-ICPC World Finals 2013 Problem F: Low Power 11



This page is intentionally left blank.



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem G
Map Tiles

Time Limit: 20 seconds

Publishing maps is not an easy task. First you need some appropriate transformation to display the
earth’s spherical shape in a two-dimensional plane. Then another issue arises – most high-quality maps
are too large to be printed on a single page of paper. To cope with that, map publishers often split maps
into several rectangular tiles, and print each tile on one page. In this problem, you will examine this
“tiling” process.

The International Cartographic Publishing Company (ICPC) needs to cut their printing costs by mini-
mizing the number of tiles used for their maps. Even with a fixed tile size (determined by the page size)
and map scale, you can still optimize the situation by adjusting the tile grid.

The left side of Figure G.1 shows 14 map tiles covering a region. The right side shows how you can
cover the same region with only 10 tiles, without changing the tile sizes or orientation.

Figure G.1: Two possible ways of tiling Texas.

Your task is to help the ICPC find the minimum number of tiles needed to cover a given region. For
simplicity, the region will be given as a closed polygon that does not intersect itself.

Note that the tiles must be part of a rectangular grid aligned with the x-axis and y-axis. That is, they
touch each other only with their whole sides and cannot be rotated. Also note that although all input
coordinates are integers, tiles may be located at non-integer coordinates.

The polygon may touch the edges of marginal lines (as in Sample Input 2). However, to avoid floating-
point issues, you may assume the optimal answer will not change even if the polygon is allowed to go
outside the map tiles by a distance of 10−6.

Input

The input consists of a single test case. The first line of a test case contains three integers: n, xs, and ys.
The number of polygon vertices is n (3 ≤ n ≤ 50), and xs and ys (1 ≤ xs, ys ≤ 100) are the dimensions
of each tile. Each of the next n lines contains two integers x and y (0 ≤ x ≤ 10xs, 0 ≤ y ≤ 10ys),
specifying the vertices of the polygon representing the region (in either clockwise or counter-clockwise
order).

ACM-ICPC World Finals 2013 Problem G: Map Tiles 13



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Output

Display the minimal number of tiles necessary to cover the whole interior of the polygon.

Sample Input 1 Sample Output 1

12 9 9
1 8
1 16
6 16
9 29
19 31
23 24
30 23
29 18
20 12
22 8
14 0
14 8

10

Sample Input 2 Sample Output 2

4 5 7
10 10
15 10
15 17
10 17

1

ACM-ICPC World Finals 2013 Problem G: Map Tiles 14



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem H
Matr�xka

Time Limit: 5 seconds

Matryoshkas are sets of traditional Russian wooden dolls of decreasing size placed one inside the other.
A matryoshka doll can be opened to reveal a smaller figure of the same sort inside, which has, in turn,
another figure inside, and so on.

Picture from Wikimedia Commons

The Russian Matryoshka Museum recently exhibited a col-
lection of similarly designed matryoshka sets, differing
only in the number of nested dolls in each set. Unfor-
tunately, some over-zealous (and obviously unsupervised)
children separated these sets, placing all the individual
dolls in a row. There are n dolls in the row, each with an
integer size. You need to reassemble the matryoshka sets,
knowing neither the number of sets nor the number of dolls
in each set. You know only that every complete set consists
of dolls with consecutive sizes from 1 to some number m,
which may vary between the different sets.

When reassembling the sets, you must follow these rules:

• You can put a doll or a nested group of dolls only inside a larger doll.

• You can combine two groups of dolls only if they are adjacent in the row.

• Once a doll becomes a member of a group, it cannot be transferred to another group or per-
manently separated from the group. It can be temporarily separated only when combining two
groups.

Your time is valuable, and you want to do this reassembly process as quickly as possible. The only
time-consuming part of this task is opening and subsequently closing a doll, so you want to minimize
how often you do this. For example, the minimum number of openings (and subsequent closings) when
combining group [1, 2, 6] with the group [4] is two, since you have to open the dolls with sizes 6 and 4.
When combining group [1, 2, 5] with the group [3, 4], you need to perform three openings.

Write a program to calculate the minimum number of openings required to combine all disassembled
matryoshka sets.

Input

The input consists of a single test case. A test case consists of two lines. The first line contains one
integer n (1 ≤ n ≤ 500) representing the number of individual dolls in the row. The second line
contains n positive integers specifying the sizes of the dolls in the order they appear in the row. Each
size is between 1 and 500 inclusive.

Output

Display the minimum number of openings required when reassembling the matryoshka sets. If reassem-
bling cannot be done (some of the kids might have been excessively zealous and taken some dolls),
display the word impossible.

ACM-ICPC World Finals 2013 Problem H: Matr�xka 15



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Sample Input 1 Sample Output 1

7
1 2 1 2 4 3 3

impossible

Sample Input 2 Sample Output 2

7
1 2 3 2 4 1 3

7

ACM-ICPC World Finals 2013 Problem H: Matr�xka 16



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem I
Pirate Chest

Time Limit: 15 seconds

Pirate Dick finally had enough of fighting, marauding, theft, and making life miserable for many on
the open seas. So he decided to retire, and he found the perfect island to spend the rest of his days on,
provided he does not run out of money. He has plenty of gold coins now, and he wants to store them in a
chest (he is a pirate after all). Dick can construct a rectangular chest with integer dimensions of any size
up to a specified maximum size for the top but with an arbitrary integer height. Now he needs a place to
hide the chest. While exploring the island, he found the perfect solution.

Dick will hide his chest by submerging it in a murky pond. The pond has a rectangular surface, and it
completely fills the bottom of a valley that has high vertical rocky walls. Dick surveyed the pond and
knows its depth for each of the squares of a Cartesian coordinate grid system placed on the pond surface.
When Dick submerges the chest, it will sink as far as possible until it touches the bottom. The top of the
chest will remain parallel to the pond’s surface and the chest will be aligned with the grid squares. The
water displaced by the submerged chest will raise the level of the pond’s surface (this will occur even
if there is no space around the chest for the displaced water to rise). The walls of the valley are high
enough that the water can never splash out of the valley. Of course, since the chest must be invisible, its
top must be strictly below the surface of the pond. Your job is to find the volume of the largest chest that
Pirate Dick can hide this way.

In Figure I.1, the leftmost image shows a pond, the middle image shows a possible placement of a chest
of volume 3, and the rightmost image shows a placement of a chest of volume 4, which is the maximum
possible volume. Note that if the second chest were made one unit taller, its top would be visible because
it would be at exactly the same height as the surface of the water.

Figure I.1: Illustration of Sample Input 1.

Input

The input consists of a single test case. A test case starts with a line containing four integers a, b, m, and
n (1 ≤ a, b,m, n ≤ 500). The pond’s surface dimensions are m × n and the maximum size of the top
(and bottom) of the chest is a × b. In addition, a and b are small enough that it is not possible to cover
the entire pond with a chest with top size a× b. Each of the remaining m lines in a test case contains n
integers di,j specifying the pond’s depth at grid square (i, j), where 0 ≤ di,j ≤ 109 for each 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

ACM-ICPC World Finals 2013 Problem I: Pirate Chest 17



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Output

Display the maximum volume of a rectangular chest with integer dimensions (where one of the dimen-
sions of the top is bounded by a and the other is bounded by b) that can be completely submerged below
the surface of the pond. If no chest can be hidden in the pond, display 0.

Sample Input 1 Sample Output 1

3 1 2 3
2 1 1
2 2 1

4

Sample Input 2 Sample Output 2

4 1 1 5
2 0 2 2 2

12

Sample Input 3 Sample Output 3

2 3 3 5
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

18

ACM-ICPC World Finals 2013 Problem I: Pirate Chest 18



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem J
Pollution Solution
Time Limit: 1 second

As an employee of Aqueous Contaminate Management, you must monitor the pollution that gets dumped
(sometimes accidentally, sometimes purposefully) into rivers, lakes and oceans. One of your jobs is to
measure the impact of the pollution on various ecosystems in the water such as coral reefs, spawning
grounds, and so on.

Figure J.1: Illustration of Sample Input 1.

The model you use in your analysis is illustrated in Figure J.1. The shoreline (the horizontal line in the
figure) lies on the x-axis with the source of the pollution located at the origin (0,0). The spread of the
pollution into the water is represented by the semicircle, and the polygon represents the ecosystem of
concern. You must determine the area of the ecosystem that is contaminated, represented by the dark
blue region in the figure.

Input

The input consists of a single test case. A test case starts with a line containing two integers n and r,
where 3 ≤ n ≤ 100 is the number of vertices in the polygon and 1 ≤ r ≤ 1 000 is the radius of the
pollution field. This is followed by n lines, each containing two integers xi, yi, giving the coordinates of
the polygon vertices in counter-clockwise order, where −1 500 ≤ xi ≤ 1 500 and 0 ≤ yi ≤ 1 500. The
polygon does not self-intersect or touch itself. No vertex lies on the circle boundary.

Output

Display the area of the polygon that falls within the semicircle centered at the origin with radius r. Give
the result with an absolute error of at most 10−3.

ACM-ICPC World Finals 2013 Problem J: Pollution Solution 19



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Sample Input 1 Sample Output 1

6 10
-8 2
8 2
8 14
0 14
0 6
-8 14

101.576437872

ACM-ICPC World Finals 2013 Problem J: Pollution Solution 20



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Problem K
Up a Tree

Time Limit: 6 seconds

Anatoly Cheng McDougal is a typical student in many ways. Whenever possible he tries to cut and paste
code instead of writing it from scratch. Unavoidably this approach causes him problems. For example,
when he first learned about preorder, inorder and postorder traversals of trees, and was given code for
a preorder print of a tree (shown on the left below), he simply cut and pasted the code, then moved the
print statement to the correct location and renamed the procedure. However, he forgot to rename the
procedure calls inside the code, resulting in the defective inorder print and postorder print code shown
below.

void prePrint(TNode t)
{

output(t.value);
if (t.left != null)

prePrint(t.left);
if (t.right != null)

prePrint(t.right);
}

void inPrint(TNode t)
{

if (t.left != null)
prePrint(t.left);

output(t.value);
if (t.right != null)

prePrint(t.right);
}

void postPrint(TNode t)
{
if (t.left != null)
prePrint(t.left);

if (t.right != null)
prePrint(t.right);

output(t.value);
}

At this point, Anatoly did not behave like a typical student. He actually tested his code! Unfortunately,
when the results were not correct, he reverted back to typical student behavior. He panicked and started
randomly changing calls in all three procedures, hoping to get things right. Needless to say, the situation
became even worse now than when he started.

Anatoly’s professor tested the code on a random tree of characters. When she looked at the output of his
three print routines, she correctly guessed what had happened. However, instead of going directly to his
code, she decided to try to reconstruct Anatoly’s code just by observing the output. In order to do this,
she correctly made the following assumptions:

1. The output statement in each print routine is in the correct location (for example, between the two
recursive calls in the inPrint routine).

2. Among the six recursive calls made by the three routines, exactly two calls are to prePrint,
exactly two are to inPrint, and exactly two are to postPrint, though potentially in the
wrong routines.

Soon the professor realized that reconstructing Anatoly’s code and the test tree from his output was not
a simple task and that the result might be ambiguous. You will have to help her find all possible recon-
structions of Anatoly’s code. In addition, for each such reconstruction, you are to find the alphabetically
first tree (as described in the output section) giving the observed output.

Input

The input consists of a single test case. A test case consists of three strings on three separate lines: the
observed output of Anatoly’s prePrint, inPrint and postPrint routines (in that order) on some
test tree. Each of these strings consists of n uppercase letters (4 ≤ n ≤ 26), with no repeated letters in
any string. The test case is guaranteed to have at least one solution.

ACM-ICPC World Finals 2013 Problem K: Up a Tree 21



2013 World Finals

St. Petersburg
HOSTED BY ITMO

ICPC 2013

Output

Display all possible reconstructions for the test case, ordered as described in the last paragraph below.
The output for each reconstruction consists of two parts. The first part is a single line and describes the
six calls in Anatoly’s routines: first the two (recursive) calls in Anatoly’s prePrint routine, followed
by the calls in his inPrint routine, and finally the calls in his postPrint routine. The calls are
described by the words Pre, In, and Post, separated by spaces. For example, if Anatoly’s routines
were correct, the resulting output of the first part of the reconstruction would be Pre Pre In In
Post Post.

The second part consists of three lines and describes the first test tree that could have generated the ob-
served outputs. The first line is the correct preorder print of the tree, and the second and third lines con-
tain the correct inorder and postorder prints, respectively. The first tree is the one with the alphabetically
first preorder print. If there are multiple such trees, the first of these is the one with the alphabetically
first inorder print.

Every reconstruction is a sequence of 6 tokens chosen from Pre, In, and Post. The ordering of
reconstructions is lexicographic with respect to the following ordering of tokens: Pre < In < Post.

Sample Input 1 Sample Output 1

HFBIGEDCJA
BIGEDCJFAH
BIGEDCJFAH

Pre Post In Post In Pre
HFBJCDEGIA
BIGEDCJFAH
IGEDCJBAFH

Sample Input 2 Sample Output 2

BNLFAGHPEDOCMJIK
NLBGAPHCODEIJMKF
NLFAGHPEDOCMJIKB

In Pre In Post Post Pre
BLNFKMEHAGPCODIJ
NLBAGHPEODCMIJKF
NLGAPHDOCEJIMKFB

Post Pre In In Post Pre
BLNFKICPGAHEODMJ
NLBGAPHCODEIJMKF
NLAGHPDOECJMIKFB

ACM-ICPC World Finals 2013 Problem K: Up a Tree 22


