
Practice Problem A
Preludes

Problem ID: chopin

Frederic Chopin was a Polish music composer who lived from 1810-1839. One of his most famous
works was his set of preludes. These 24 pieces span the 24 musical keys (there are musically distinct 12
scale notes, and each may use major or minor tonality). The 12 distinct scale notes are:

1 2 3 4 5 6 7 8 9 10 11 12
A A] = B[B C C] = D[D D] = E[E F F] = G[G G] = A[

Five of the notes have two alternate names, as is indicated above with the equals sign (e.g. C] = D[
means that note has two names, C] and D[). Thus, there are 17 possible names for the scale notes,
but only 12 musically distinct notes. When using one of these as the keynote for a musical key, we can
further distinguish between the major and minor tonalities. This gives 34 possible keys, of which 24 are
musically distinct.

In naming his preludes, Chopin used all the keys except for the following 10 (which were named instead
by their alternate names):

A[minor A] major A] minor C] major D[minor
D] major D] minor G[major G[minor G] major

Write a program that, given the name of a key, will give an alternate name (if it has an alternate) or report
that the key name is unique.

Input

Each test case is described by one line of input having the format “note tonality”, where note is
one of the 17 names for the scale notes given above, and tonality is either major or minor. All
note names will be upper-case, and the two accidentals (] and [) will be written as # and b, respectively.

Output

For each case, display the case number followed by the alternate key name, if it exists, or print UNIQUE
if the key name is unique. Follow the format of the sample output.

Sample Input Output for Sample Input

Ab minor
D# major
G minor

Case 1: G# minor
Case 2: Eb major
Case 3: UNIQUE

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem A: Preludes 1

This page is intentionally left blank.

Practice Problem B
Limited Correspondence
Problem ID: correspondence

Emil, a Polish mathematician, sent a simple puzzle by post to his British friend, Alan. Alan sent a reply
saying he didn’t have an infinite amount of time he could spend on such non-essential things. Emil
modified his puzzle (making it a bit more restricted) and sent it back to Alan. Alan then solved the
puzzle.

Here is the original puzzle Emil sent: given a sequence of pairs of strings (a1, b1), (a2, b2), . . . , (ak, bk),
find a non-empty sequence s1, s2, . . . , sm such that the following is true:

as1as2 . . . asm = bs1bs2 . . . bsm

where as1as2 . . . indicates string concatenation. The modified puzzle that Emil sent added the following
restriction: for all i 6= j, si 6= sj .

You don’t have enough time to solve Emil’s original puzzle. Can you solve the modified version?

Input

Each test case starts with a line containing an integer 1 ≤ k ≤ 11, followed by k lines. Each of the k
lines contains two space-separated lowercase alphabetic strings which represent a pair. Each individual
string will be at most 100 characters long.

Output

For each case, display the case number followed by the sequence found (if it is possible to form one)
or “IMPOSSIBLE” (if it is not possible to solve the problem). If it is possible but there are multiple
sequences, you should prefer the shortest one (in terms of the length of the output). If there are multiple
shortest sequences, choose the one that is lexicographically first. Follow the format of the sample output.

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem B: Limited Correspondence 3

Sample Input Output for Sample Input

5
are yo
you u
how nhoware
alan arala
dear de
8
i ie
ing ding
resp orres
ond pon
oyc y
hello hi
enj njo
or c
3
efgh efgh
d cd
abc ab
3
a ab
b bb
c cc

Case 1: dearalanhowareyou
Case 2: ienjoycorresponding
Case 3: abcd
Case 4: IMPOSSIBLE

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem B: Limited Correspondence 4

Practice Problem C
Heliocentric

Problem ID: heliocentric

Nicolaus Copernicus, born in Toruń in the Kingdom of Poland in 1473, was the first to develop a view of
the universe which placed the Sun, rather than the Earth, at the center of the orbiting planets. Copernicus
viewed each planet as revolving in a circular orbit with the Sun as the common center of each circle. This
new model, which was later improved by many other astronomers, made it much simpler to understand
and predict the motions of the planets. Pictured below is his rendering of the planetary orbits.

Consider two of the planets in Copernicus’ orbital system: Earth and Mars. Assume the Earth orbits the
Sun in exactly 365 Earth days, and Mars orbits the Sun in exactly 687 Earth days. Thus the Earth’s orbit
starts at day 0 and continues to day 364, and then starts over at day 0. Mars orbits similarly, but on a 687
day time scale. We would like to find out how long it will take until both planets are on day 0 of their
orbits simultanously. Write a program that can determine this.

Input

Each test case is described by a single line containing two integers 0 ≤ e < 365 and 0 ≤ m < 687.
These indicate which days Earth and Mars are at their respective orbits.

Output

For each case, display the case number followed by the smallest number of days until the two planets
will both be on day 0 of their orbits. Follow the format of the sample output.

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem C: Heliocentric 5

Sample Input Output for Sample Input

0 0
364 686
360 682
0 1
1 0

Case 1: 0
Case 2: 1
Case 3: 5
Case 4: 239075
Case 5: 11679

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem C: Heliocentric 6

Practice Problem D
In or Out

Problem ID: mandelbrot

Born in Warsaw, Benoît Mandelbrot (1924-2010) is considered the father of fractal geometry. He studied
mathematical processes that described self-similar and natural shapes known as fractals. Perhaps his
most well-known contribution is the Mandelbrot set, which is pictured below (the set contains the black
points):

The Mandelbrot set is typically drawn on the complex plane, a 2-dimensional plane representing all
complex numbers. The horizontal axis represents the real portion of the number, and the vertical axis
represents the imaginary portion. A complex number c = x + yi (at position (x, y) on the complex
plane) is not in the Mandelbrot set if the following sequence diverges:

zn+1 ← z2n + c

beginning with z0 = 0. That is, limn→∞ |zn| =∞. If the sequence does not diverge, then c is in the set.

Recall the following facts about imaginary numbers and their arithmetic:

i =
√
−1, i2 = −1, (x+ yi)2 = x2 − y2 + 2xyi, |x+ yi| =

√
x2 + y2

where x and y are real numbers, and | · | is known as the modulus of a complex number (in the complex
plane, the modulus of x+ yi is equal to the straight-line distance from the origin to the the point (x, y)).

Write a program which determines if the sequence zn diverges for a given value c within a fixed number
of iterations. That is, is c in the Mandelbrot set or not? To detect divergence, just check to see if |zn| > 2
for any zn that we compute – if this happens, the sequence is guaranteed to diverge.

Input

Each test case is described by a single line containing three numbers: two real numbers −3 ≤ x ≤ 3
and −3 ≤ y ≤ 3, and an integer 0 ≤ r ≤ 10,000. The value of c for this case is x + yi, and r is the
maximum number of iterations to compute.

Output

For each case, display the case number followed by whether the given c is in the Mandelbrot set, using
IN or OUT.

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem D: In or Out 7

Sample Input Output for Sample Input

0 0 100
1.264 -1.109 100
1.264 -1.109 10
1.264 -1.109 1
-2.914 -1.783 200
0.124 0.369 200

Case 1: IN
Case 2: OUT
Case 3: OUT
Case 4: IN
Case 5: OUT
Case 6: IN

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem D: In or Out 8

Practice Problem E
Polish Notation
Problem ID: polish

One way of representing mathematical expressions is with Polish (or prefix) notation, initially devel-
oped by Jan Łukasiewicz (1878-1956) for use in logic. In this notation, the operator appears before its
operands. For example, rather than writing

3 + 4 ∗ 7

using so-called infix notation, we could write the equivalent expression in Polish notation

+ 3 ∗ 4 7

In this example, the addition applies to the values of the two following expressions, ‘3’ and ‘* 4 7’.
Further, the multiplication applies to two values that follow it, 4 and 7.

In general, we can write an expression in Polish notation using the following rules:

• A constant integer is an expression (e.g. 3).

• A lowercase single character is an expression (a variable, e.g. x).

• If E1 and E2 are expressions and OP is an operator, then the following is an expression: ‘OP E1
E2’. The meaning of this expression in infix notation is ‘E1 OP E2’.

The operators that we will support are all binary: addition (+), subtraction (-), and multiplication (*).

Polish notation has the advantage of being easy to parse for a computer. Write a program that reads an
expression in Polish notation, simplifies the expression as much as possible, and prints it out in Polish
notation. The simplification procedure is just replacing subexpressions that contain no variables with
their values wherever possible.

Input

Each test case is described by a single line containing an expression. The expression is a sequence of
space-separated tokens (integers, operators, and single-character lowercase variables). Each expression
will be correctly formatted in Polish notation, with at most 2048 symbols (operators and operators
combined). Integer constants will be in the range [−10, 10].

Output

For each case, display the case number followed by the simplified expression in Polish notation, in the
same format as the input. Do not modify the expression other than the simplification step described
earlier. All intermediate computations will fit within a signed 32-bit integer. Follow the format of the
sample output.

Sample Input Output for Sample Input

+ 3 4
- x x

* - 6 + x -6 - - 9 6 * 0 c

Case 1: 7
Case 2: - x x
Case 3: * - 6 + x -6 - 3 * 0 c

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem E: Polish Notation 9

This page is intentionally left blank.

Practice Problem F
Prime Spiral

Problem ID: spiral

Boredom can be good for creativity. Polish mathematician Stanislaw Ulam (1909-1984) discovered the
eponymous Ulam spiral while listening to a “long and very boring paper”. He started by writing down
the positive integers in a spiral on a grid, one number per grid cell. Then he eliminated the composite
numbers (i.e. non-primes). An interesting property he discovered was that the remaining prime numbers
seem to form along many diagonals of the grid:

All positive integers Only primes

...

1 2

345

6

7 8 9 10

11

12

1314151617

18

19

20

21 22 23 24 25 26

27

28

29

30

31323334353637

38

39

40

41

42

43 44 45 46 47 48 49 50

51

52

53

54

55

56

575859606162636465

66

67

68

69

70

71

72

73 74 75 76 77 78 79 80 81 82

83

84

85

86

87

88

89

90

919293949596979899100101

102

103

104

105

106

107

108

109

110

111 112 113 114 115 116 117 118 119 ...

2

35

7

11

1317

19

23

29

3137

41

43 47

53

5961

67

71

73 79

83

89

97101

103

107

109

113

Note that both of these are infinitely large grids, but due to physical constraints only a finite subset of
the grid will fit in this space.

Let’s consider traveling around the second grid above (the Ulam spiral), where you are free to travel to
any cell containing a composite number, but traveling to any cell containing a prime number is disal-
lowed. You can travel up, down, left, or right, but not diagonally. Write a program to find the length
of the shortest path between pairs composite numbers, if it is possible. Note, for example, that it is
impossible to travel from the cells numbered 12 and 72 to any other composite cell. The length of a path
is the number of steps on the path.

Input

Each test case is described by a line of input containing two integers 1 ≤ x, y ≤ 10,000 which indicate
two cells in the grid. Note that while there are limits on the input values, the intervening path between x
and y is not limited in any way.

Output

For each case, display the case number followed by the length of the shortest path between the cells x
and y, or “impossible” if no such path is possible.

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem F: Prime Spiral 11

Sample Input Output for Sample Input

1 4
9 32
10 12

Case 1: 1
Case 2: 7
Case 3: impossible

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem F: Prime Spiral 12

Practice Problem G
Sierpiński circumference

Problem ID: triangle

Polish mathematician Wacław Sierpiński (1882-1969) described the 2D geometric figure known as the
Sierpiński triangle as part of his work on set theory in 1915. The triangle, which is really an infinite
collection of points, can be constructed by the following algorithm:

1. The initial shape is a solid triangle.

2. Shrink the current shape to half its dimensions (both height and width), and make two more copies
of it (giving three copies total).

3. Arrange the three copies so that each touches the two others at their corners. Set the current shape
to be the union of these three.

4. Repeat from step 2.

Here is an illustration of the first few iterations:

iteration 0 1 2 3 4

As the iterations go to infinity, this process creates an infinite number of connected points. However,
consider the case of a finite number of iterations. If the initial triangle has a circumference of 3, what is
the sum of the circumferences of all (black) triangles at a given iteration? Write a program to find out
not the exact circumference, but the number of decimal digits required to represent its integer portion.
That is, find the number of decimal digits required to represent the largest integer that is at most as large
as the circumference.

Input

Each test case is a line containing a non-negative integer 0 ≤ n ≤ 10,000 indicating the number of
iterations.

Output

For each case, display the case number followed by the number of decimal digits required to represent
the integer portion of the circumference for the given number of iterations. Follow the format of the
sample output.

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem G: Sierpiński circumference 13

Sample Input Output for Sample Input

0
1
5
10
100

Case 1: 1
Case 2: 1
Case 3: 2
Case 4: 3
Case 5: 19

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem G: Sierpiński circumference 14

Practice Problem H
Towers of Powers 2: Power Harder

Problem ID: towers

Remark: We were originally planning to give you this in the real contest, but since we have too many
awesome problems for you for tomorrow and this one is just way too easy, we decided to move it to the
dress rehearsal as a sneak preview.

In this problem we will be exploring the concept of sorting numbers. Most of you have likely written a
sorting algorithm before, but just in case, here is a tutorial: You reorder the numbers to put the smaller
ones in front and larger ones in the back.

Having dealt with the theory, we come to practice. You will be given some integers. Please output the
same integers in sorted order. Where is the trick, you ask? Well, you might have to deal with equality
cases. If two numbers are equal, the one that was the first in the input should also be the first on the
output. Other than that, there are no tricks, no complications. Just sort the numbers from lowest to
highest. Simple!

Oh, one more thing. When we say some integers, we mean they might be somewhat large integers. To
make life easier for you, we will express them in a simple “tower of powers” form. Each integer will be
in the format

a
a...

an
2

1 ,

where 1 ≤ a1, a2, . . . , an ≤ 100, and 1 ≤ n ≤ 100. Note that evaluation is from top to bottom, thus

a
a
a3
2

1 = a
(aa32)
1 .

Are you done yet? No? Better start working!

Input

The first line of each test case contains the number M of integers in this test case, 1 ≤M ≤ 100. Each
of the next M lines describes one of the M integers. The integer is written as described above, using
the carat (^) to represent power, with no whitespace. There will be between 1 and 100 numbers in the
representation of each integer, and each of these numbers will be an integer between 1 and 100.

Output

For each test case, display the case number followed by the sorted list of integers, one per line, in the
original form.

Sample Input Output for Sample Input

4
2^2^2
3^4
15
9^2

Case 1:
15
2^2^2
3^4
9^2

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem H: Towers of Powers 2: Power
Harder

15

This page is intentionally left blank.

Practice Problem I
Matrix Inverse

Problem ID: matrix

Given a square n × n matrix A, the definition of its inverse B = A−1 is the matrix that fulfills the
equality:

AB = I

where B and I are n× n matrices, and I is the identity matrix with ones along the diagonal, and zeros
everywhere else:

I =

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

For this problem, you should implement a matrix inverse solver for 2× 2 matrices.

Input

Each test case is described by two lines of input. Each line has two 32-bit signed integers, and the
integers given in order a, b, c, d represent the values of the matrix to invert:

A =

[
a b
c d

]
A blank line follows each test case.

Output

For each case, display the case number followed by two lines containing the inverse of the given matrix.
Each test case is guaranteed to have an inverse (i.e. no matrix is singular), and that inverse is integer-
valued. Follow the format of the sample output.

Sample Input Output for Sample Input

1 0
0 1

30 29
1 1

-7 -16
4 9

Case 1:
1 0
0 1
Case 2:
1 -29
-1 30
Case 3:
9 16
-4 -7

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem I: Matrix Inverse 17

This page is intentionally left blank.

Practice Problem J
Reversing Roads
Problem ID: roads

You work for the city of One-Direction-Ville. The city mandates that every road in its limits be one
direction only. You are evaluating proposals for a new subdivision and its road network. One problem
you’ve observed in some early proposals is that it is impossible to get to certain locations from others
along the proposed roads. In order to speed up evaluation of subsequent proposals, you want to write a
program to determine if it is possible to get to any location from any other location; you call this a valid
proposal. And if a proposal is not valid, then your program should find out if there is an easy way to fix
it by reversing the direction of one of the roads.

Input

Each test case begins with a line containing two integers, 1 ≤ m ≤ 50 and 0 ≤ n ≤ m(m − 1)/2. m
indicates the number of locations in the proposal, and n indicates the number of roads connecting these
locations. Following this are n lines. Each line contains two space-separated integers a and b, where
0 ≤ a, b < m and a 6= b. This indicates that there is a road from location a to location b. If there is a
road from a to b, then there will be no road from b to a. Also, there will never be more than one road
between two locations.

Output

For each case, display the case number followed by an indication of whether the proposal is valid or not.
If the proposal is valid, output valid. If it is not valid, but by reversing the direction of one roads it
can become valid, print the two locations which describe the existing road that should be reversed. If
more than one road reversal can create a valid proposal, print the first one that appears in the input. If
the proposal is not valid and impossible to become valid by reversing one road, print invalid. Follow
the format of the sample output.

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem J: Reversing Roads 19

Sample Input Output for Sample Input

3 3
0 1
1 2
2 0
3 3
0 1
1 2
0 2
3 2
1 2
0 2
4 4
0 1
1 2
2 3
0 3

Case 1: valid
Case 2: 0 2
Case 3: invalid
Case 4: 0 3

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem J: Reversing Roads 20

Practice Problem K
Counting Stars
Problem ID: stars

The field of astronomy has been significantly advanced through the use of computer technology. Algo-
rithms can automatically survey digital images of the night sky, looking for new patterns.

For this problem, you should write such an analysis program which counts the number of stars visible
in an bitmap image. An image consists of pixels, and each pixel is either black or white (represented
by the characters # and -, respectively). All black pixels are considered to be part of the sky, and each
white pixel is considered to be part of a star. White pixels that are adjacent vertically or horizontally are
part of the same star.

Input

Each test case begins with a line containing a pair of integers 1 ≤ m,n ≤ 100. This is followed by m
lines, each of which contains exactly n pixels.

Output

For each case, display the case number followed by the number of stars that are visible in the corre-
sponding image. Follow the format of the sample output.

Sample Input Output for Sample Input

10 20
#################---
##-###############--
#---################
##-#################
########---#########
#######-----########
########---#########
##################--
#################---
##################-#
3 10
#-########

#-########

Case 1: 4
Case 2: 1

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem K: Counting Stars 21

This page is intentionally left blank.

Practice Problem L
Statistics

Problem ID: statistics

Research often involves dealing with large quantities of data, and those data are often too massive to
examine manually. Statistical descriptions of data can help humans understand their basic properties.
Consider a sample of n numbers X = (x1, x2, . . . , xn). Of many statistics that can be computed on X ,
some of the most important are the following:

• min(X): the smallest value in X

• max(X): the largest value in X

• range(X): max(X)−min(X)

Write a program that will analyze samples of data and report these values for each sample.

Input

Each test case is described by one line of input, which begins with an integer 1 ≤ n ≤ 30 and is followed
by n integers which make up the sample to be analyzed. Each value in the sample will be in the range
-1,000,000 to 1,000,000.

Output

For each case, display the case number followed by the min, max, and range of the sample (in that
order). Follow the format of the sample output.

Sample Input Output for Sample Input

2 4 10
9 2 5 6 4 5 9 2 1 4
7 6 10 1 2 5 10 9
1 9

Case 1: 4 10 6
Case 2: 1 9 8
Case 3: 1 10 9
Case 4: 9 9 0

ACM-ICPC World Finals Dress Rehearsal 2012 Practice Problem L: Statistics 23

This page is intentionally left blank.

