

-Page 1 of 1-

Problem A
Does Not Compute

Input file: compute.in

In some science fiction stories and films, when computers encounter an illogical situtation, their
response is often “DOES NOT COMPUTE.” For this problem, you will write a computer
program which can simulate this behavior whenever it sees arithmetic statements that are
incorrect.

Input

The input file contains multiple test cases, each of which describes an arithmetic statement. Each
statement is of the form “A OPERATOR B = C”, where A, B, C are integers, and OPERATOR is
“+”, “-”, or “*” indicating addition, subtraction, or multiplication. The integers A and B are both
in the range 1 to 999, and all tokens are separated by whitespace (spaces or newlines). The last
test case is followed by a line containing a single zero.

Output

For each test case, print the case number (beginning with 1) followed by either OKAY (if the
statement is correct), or DOES NOT COMPUTE (if the statement is incorrect).

Follow the format of the sample output.

Sample Input Output for the Sample Input
1 + 1 = 2
3 * 5 = 15
100 - 10 = 10
0

Case 1: OKAY
Case 2: OKAY
Case 3: DOES NOT COMPUTE

-Page 1 of 1-

Problem B
Formatting Text
Input file: format.in

Computers are great tools for storing, editing, and presenting textual information. When
presenting text, one of the most important factors is where to place newlines. For this problem,
you should write a program that re-formats text according to a simple set of rules and special
markers in the source text.

Input

The input is a sequence of tokens separated by whitespace (each separator is a single space or
newline). All non-whitespace tokens are considered normal except for two special tokens: “N”
and “END”. The “N” token indicates that a newline should be inserted into the text, and the
“END” token indicates the end of input.

Output

Print out each normal token followed by a space. For each occurrence of the special token “N”,
print a newline.

Follow the format of the sample output.

Sample Input Output for the Sample Input
A
man provided
with paper, N pencil, N and
rubber, N and
subject to strict
discipline, N is in
effect a
universal machine. N N A. M.
Turing N END

A man provided with paper,
pencil,
and rubber,
and subject to strict discipline,
is in effect a universal machine.

A. M. Turing

-Page 1 of 1-

Problem C
Genetic Search
Input file: genetic.in

Technology has greatly changed the field of biology in the last decade, since biological
information can be digitized and analyzed by computer. One of the most basic analysis tasks is
counting the number of occurrences (or near-occurrences) of a search string S inside of another
string L that is at least as long as S.

For this problem, you are given pairs of strings S and L. Both strings contain only the uppercase
characters A, G, C, and T. For each of the following types of search strings, count the number of
times that type occurs as an exact substring of L:

• Type 1: S, without any changes.
• Type 2: All unique strings that can be made by deleting one character from S (for example,

AGC can become AG, AC, or GC).
• Type 3: All unique strings that can be made by inserting one character in S (for example,

AG can become any of the following: AAG, GAG, CAG, TAG, AGG, ACG, ATG, AGA,
AGC, or AGT).

If two or more different modifications of S result in the same string, count only the occurrences of
that string once.

Input

The input file contains multiple test cases, each of which contains two strings: S followed by L.
The length of S is at least 2 characters and at most the length of L. The length of L is at most 100
characters. The last test case is followed by a line containing a single zero.

Output

For each test case, print the case number (beginning with 1) followed by the number of
occurrences of Type 1, then Type 2, then Type 3.

Follow the format of the sample output.

Sample Input Output for the Sample Input
AGCT AGCTAGCT
AAA AAAAAAAAAA
AGC TTTTGT
0

Case 1: 2 4 2
Case 2: 8 9 7
Case 3: 0 0 0

-Page 1 of 1-

Problem D
Unique Shapes

Input file: There is no input for this problem.

Imagine you have a lot of square blocks, and you can put them together into different shapes. You
can make all kinds of shapes – but how many can you make that are truly unique?

We will consider a shape to be a connected group of blocks placed on a regular grid, where each
block is connected to another block above it, below it, to its left, or to its right. Two shapes are
considered unique if there is no sequence of rotations, translations, or reflections that can cause
them to be identical.

With one block, only one unique shape can be made. With two blocks, the same is true. With
three blocks, two unique shapes are possible, and with four blocks, five unique shapes are
possible. The figure below gives illustrations of these cases:

Input

There is no input for this problem.

Output

Print out the number of unique shapes that can be constructed using 8 square blocks, as a decimal
integer.

Sample Input Output for the Sample Input
There is no input for this
problem.

There is no sample output for
this problem.

