The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem A

Airport Configuration
Input: airport.in

ACM Airlinesisaregional airline with von Neumann Airport asits home port. For many passengers, von Neumann
Airport is not the start of their trip, nor their final destination, so many transfer passengers pass through the airport.

The von Neumann Airport has a corridor layout. Arrival gates are located, equally spaced, at the north side of the
corridor. Departure gates are at the south side of the corridor, equally spaced aswell. The distance between two
adjacent gates equal s the width of the corridor. Each arrival gate is assigned to exactly one city, and the same holds
for the departure gates. Passengers arrive at the arrival gate assigned to their city of origin and exit the terminal or
proceed to aconnecting flight at a gate assigned to their destination city. For this problem, only passengers with
connecting flights are considered.

Transferring passengers generate alot of traffic in the corridor. The average number of people traveling between
citiesis known beforehand. Using thisinformation, it should be possible to reduce the traffic. If transfers from city
Cx to city Cy occur very frequently, it may help to locate the gates assigned to these cities near or even directly
opposite each other.

Due to the presence of shops and gardensit is not possible to cross the corridor diagonally, so the distance between
arriving gate G1 and departing gate G3 (see diagram) equals 1+ 2 =3.

Y ou must assess total traffic load for several different configurations. The traffic load between an origin and
destination gate is defined as the number of origin to destination passengers multiplied by the distance between the
arriving and departing gate. Thetotal traffic load isthe sum of the traffic loads for all origin-destination pairs.

Cl 2 3 Arrival Gates
| GI G2 G3 |
shop garden 1
1G1 G2 G3 —L
c2 C3 C1

Departure Gates

——
Input

Theinput file contains several test cases. The last test case in the input fileisfollowed by aline containing the
number 0.

Each test case hastwo parts: first the traffic data, then the configuration section.

The 2001 ACM Programming Contest World Finals sponsored by IBM

Thetraffic data starts with an integer N (1 < N < 25), representing the number of cities. The followingN lines each
represent traffic data for one city. Each line with traffic data begins with an integer in the range 1..N identifying the
city of origin. Thisisfollowed by k pairs of integers, one pair for every destination city. Each pair identifiesthe
destination city and the number of passengers (at most 500) traveling from the city of origin to this destination city.

The configuration section consists of one or more (at most 20) configurations and ends with aline containing the
number O.

A configuration consists of 3 lines. Thefirst line contains a positive number identifying the configuration. The next
line contains a permutation of the cities, asthey are assigned to the arrival gates: the first number represents the city
assigned to the first gate, and so on. The next linein the same way represents the cities as they are assigned to the
departure gates.

Output

For each test case, the output contains a table presenting the configuration numbers and total traffic load, in
ascending order of traffic load. If two configurations have the same traffic load, the one with the lowest
configuration number should go first. Follow the output format shown in the sample below.

Sample Input Output for the Sample Input
3 Configuration Load
1 2 210 315 2 119
2 1 310 1 122
3 2 112 2 20 Configuration Load
1 2 300
123 1 600
231

2

231

321

0

2

1 1 2 100

2 1 1200

1

12

12

2

12

21

0

0

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem B
Say Cheese

Input: cheese.in

Once upon atime, in agiant piece of cheese, there lived a cheese mite named Amelia Cheese Mite. Amelia should
have been truly happy because she was surrounded by more delicious cheese than she could ever eat. Nevertheless,
shefelt that something was missing from her life.

One morning, her dreams about cheese were interrupted by a noise she had never heard before. But sheimmediately
realized what it was— the sound of a male cheese mite, gnawing in the same piece of cheese! (Determining the
gender of acheese mite just by the sound of its gnawing is by no means easy, but all cheese mitescan doit. That's
because their parents could.)

Nothing could stop Amelianow. She had to meet that other mite as soon as possible. Therefore she had to find the
fastest way to get to the other mite. Amelia can gnaw through one millimeter of cheesein ten seconds. But it turns
out that the direct way to the other mite might not be the fastest one. The cheese that Amelialivesinisfull of holes.
These holes, which are bubbles of air trapped in the cheese, are spherical for the most part. But occasionally these
spherical holes overlap, creating compound holes of all kinds of shapes. Passing through a hole in the cheese takes
Ameliaessentially zero time, since she can fly from one end to the other instantly. So it might be useful to travel
through holesto get to the other mite quickly.

For this problem, you have to write a program that, given the locations of both mites and the holes in the cheese,
determines the minimal time it takes Ameliato reach the other mite. For the purposes of this problem, you can

assume that the cheese isinfinitely large. Thisis because the cheeseis so large that it never paysfor Ameliato leave
the cheese to reach the other mite (especially since cheese-mite eaters might eat her). Y ou can also assume that the
other mite is eagerly anticipating Amelia sarrival and will not move while Ameliais underway.

Input

Theinput file contains descriptions of several cheese mite test cases. Each test case starts with aline containing a
singleinteger n (0 £ n £ 100), the number of holesin the cheese. Thisisfollowed by n lines containing four integers
Xi, Vi, Z, I each. These describe the centers (X, i, z) and radii r; (r; > 0) of the holes. All values here (and in the
following) are given in millimeters.

The description concludes with two lines containing three integers each. The first line contains the valuesxa, Ya, Za,
giving Amelia’ s position in the cheese, the second line containing Xo, Yo, Zo, gives the position of the other mite.

Theinput fileis terminated by aline containing the number —1.

Output

For each test case, print one line of output, following the format of the sample output. First print the number of the
test case (starting with 1). Then print the minimum time in seconds it takes Amelia to reach the other mite, rounded
to the closest integer. The input will be such that the rounding is unambiguous.

The 2001 ACM Programming Contest World Finals sponsored by IBM

Sample Input

Output for the Sample Input

1

20 20 20 1
00O

0 0 10

004

00
00O
1

PR o0

Cheese 1: Travel tine = 100 sec
Cheese 2: Travel tinme = 20 sec

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem C

Crossword Puzzle
Input: crossword.in

Y our brilliant but absent-minded uncle believes he has solved a difficult crossword puzzle but has misplaced the
solution. He needs your help to reconstruct the solution from alist that contains all the wordsin the solution, plus
one extraword that is not part of the solution. Y our program must solve the puzzle and print the extraword.

The crossword puzzleisrepresented by agrid with ten squares on each side. Figure 1 showsthetop left corner of a
puzzle. The puzzle has a certain number of “slots” where aword can be placed. Each slot is represented by the row
and column number of the square where the slot begins, and the direction in which the slot extends from itsinitial
square (“across’ or “down”). The length of each slot is not specified. The puzzle has alist of candidate words, all
but one of which isused in solving the puzzle.

1 2 3 4 5

Candidate Words

‘ SLOA
AGAI N
BOY
TAI L
BEAR

ga A W N B

Figure 1. Corner of Example Puzzle

Figure 2 shows a solution to the example puzzlein Figure 1. In avalid solution, each slot isfilled with a candidate
word. Every maximal horizontal or vertical sequence of two or more letters must be aword in the input. Any
candidate word can be used in any slot aslong as the word fits in the puzzle and does not conflict with any other
word. In the example, all the candidate words are used except the word “BOY™”.

1 2 3 4 5
1 B
2 E T Extraword:
3|AlG|A|l]|N BOY
4 R |
5 S| L O| W

Figure 2: Example Solution

The 2001 ACM Programming Contest World Finals sponsored by IBM

Input

The input data consist of one or moretest cases each describing a puzzletrial. Thefirst input linein each test case
contains apositive integer N that represents the number of slotsin the puzzle. Thislineisfollowed by N lines, each
contai ning the row number and column number of a square where a slot begins, followed by theletter ‘A’ (if the slot
is“Across’) or ‘D’ (if theslotis“Down”). The nextN + 1 input lines contain candidate words that can be used in
the puzzle solution.

Thefinal test caseisfollowed by aline containing the number zero.

Output

For each trial, print the trial number followed by the word that is not used in the puzzle solution, using the format in

the example output. Observe the following rules:

1) Printablank line after each trial.

2) If your uncle has made a mistake and the puzzle has no solution using the given words, print the word
“lI npossi bl e”. For example, if Trial 2 has no solution, you should print“Tri al 2: | npossi bl e”.

3) If the puzzle can be solved in more than one way, print each word that can be omitted from avalid solution. The
words can be printed in any order but each word must be printed only once. For example, if Trial 3hasa
solution that omits the word DOG and two solutions that omit the word CAT, you should print “Tri al 3:
DOG CAT” or“Trial 3: CAT DOG'.

Sample Input Output for the Sample Input

Trial 1: BOY

TwWwNEF A
NP W
>>»00

AGAI N
BOY
TAI L
BEAR

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem D

Can’t Cut Down the Forest for the Trees
Input: forest.in

Once upon atime, in acountry far away, there was aking who owned aforest of valuable trees. One day, to deal
with a cash flow problem, the king decided to cut down and sell some of histrees. He asked hiswizard to find the
largest number of treesthat could be safely cut down.

All the king’ s trees stood within arectangular fence, to protect them from thieves and vandals. Cutting down the
trees was difficult, since each tree needed room to fall without hitting and damaging other trees or the fence. Each
tree could be trimmed of branches before it was cut. For simplicity, the wizard assumed that when each tree was cut
down, it would occupy arectangular space on the ground, as shown below. One of the sides of therectangleisa
diameter of the original base of the tree. The other dimension of the rectangleis equal to the height of the tree.

height

o

Circular base: <4—— Space occupied by tree
the original position after cutting

of thetree

Many of the king’ s trees were located near other trees (that being one of the tell-tale signs of aforest.) The wizard
needed to find the maximum number of trees that could be cut down, one after another, in such away that no fallen
tree would touch any other tree or the fence. As soon as each tree falls, it is cut into pieces and carried away so it
does not interfere with the next tree to be cut.

Input

Theinput consists of several test cases each describing aforest. Thefirst line of each description containsfive
integers, xmin, ymin, xmax, ymax, and n. The first four numbers represent the minimal and maximal coordinates of
the fencein the x- and y-directions (xmin < xmax, ymin < ymax). The fence isrectangular and its sides are parallel to
the coordinate axes. The fifth number n represents the number of treesin the forest (1 £ n £ 100).

The next n lines describe the positions and dimensions of the n trees. Each line contains four integers, x, i, di, and
h;, representing the position of the tree’ s center (X, i), its base diameter d;, and its height h;. No tree bases touch
each other, and all the trees are entirely inside the fence, not touching the fence at all.

Theinput isterminated by atest case with xmin = ymin = xmax = ymax = n= 0. Thistest case should not be
processed.

The 2001 ACM Programming Contest World Finals sponsored by IBM

Output

For each test case, first print its number. Then print the maximum number of trees that can be cut down, one after
another, such that no fallen tree touches any other tree or the fence. Follow the format in the sample output given
below. Print ablank line after each test case.

Sample Input Output for the Sample Input

0O 10 10 3 Forest 1
2 10 2 tree(s) can be cut

O NO1TWO

3

5 3 1
8 3 9
0O 0 0 O

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem E
The Geoduck GUI

Input: geoduck.in

Researchers at the Association for Computational Marinelifein Vancouver have been working for several yearsto
harness various forms of aquatic life with the goal of constructing an underwater computer that can be seen from
outer space. The current research focusisabreed of clam known as the geoduck (pronounced “ GOOEY duck”),
scientific name Panope abrupta. Geoducks can be as heavy asten pounds and as long as 1 meter with their siphons
or “necks” fully extended. Because of their life expectancy (up to 150 years), they seem to be good agents for
manipulating alarge-scal e oceanic graphical user interface—hence, the “ geoduck GUI” project.

Current research examinespairs of trained geoducks each starting in adistinct corner of arectangular grid. They
crawl across the grid spreading luminescent chemicals from containers attached to their shells. Geoducks are trained
to move one grid unit horizontally or vertically per time unit to approximate a direction vector (each geoduck hasa
unique vector). If amove takes ageoduck off the edge of the grid, atrained dolphin immediately transportsit to the
cell on the opposite edge of the grid, effectively providing a“wraparound” mechanism. The entry point in the
opposite edge cell ishorizontally or vertically aligned with the exit point of the cell departed and the geoduck
trajectory is maintained. Geoduck moves are synchronized; however, ageoduck halts whenit entersacell that it has
previously visited. If two geoducks move into the same cell at the same time, they halt in that cell. If two geoducks
attempt to move into each other’ s cells at the same time, then they halt. A geoduck isinitially placed at agrid corner
so that its direction vector points“in” to the grid (e.g., if the x-component is positive and the y-component is
negative, the starting position is at the minimum x-value and the maximum y-value in the grid).

Both geoducks begin at timet=1in their respective (distinct) starting corners. A geoduck followsitsvector asif the
vector starting point were anchored to the center of geoduck’ sinitial cell position in the grid. It always movesto the
next cell that is divided into regions by the vector (or its extension), with one exception. If the vector passes through
acorner of the grid, the geoduck moves horizontally and then vertically to reach the next cell divided by the vector.
Figure 1 shows several geoduck paths. The numbersin the cellsindicate elapsed time. Grid cells are numbered from
the lower left starting at zero in both the x and y directions. If the two geoducksin Figure 1 start at the sametimein
the same 6 by 5 grid, they each halt after 5 time units with atotal of 10 cellsilluminated.

Yy y
A A
204 9 (10
413 718
615 56

9| #7 3]

10 11 > X Y2 11 x
A geoduck with vector (-4,-3) moving in A geoduck with vector (1,1) movingina6
a6 by 5 grid starting at cell (5,4). At by 5 grid starting at cell (0,0). At time step
step 12 it halts, sinceit revisits (5,4). 12 it halts, sinceit revisits (0,0).

Figure 1: Sample geoduck paths

The 2001 ACM Programming Contest World Finals sponsored by IBM

Y ou must write a program to select pairs of geoducks that illuminate the maximum number of grid cells on the
screen in the least amount of time. Repeat your calculations for various grid sizes and combinations of geoducks.

Input

Input consists of a sequence of test cases each beginning with aline containing two integersmand n, 1 =mn =50,
where mand n are not both 1. These are x and y dimensions of the grid. The second line of each test case contains an
integer k, 2=k = 10, representing the number of geoducks. At least one pair of geoducks will have distinct starting
points. The next k lines each contain a pair of non-zero integers representing the x and y components of the k
geoduck direction vectors.

Thefinal test case isfollowed by two zeros.

Output

For each test case, print the test case number, the maximum number of illuminated cells, the minimum number of
time units required to illuminate that number of cells, and the sequence numbers of each pair of geoducks that
achieve these values. Print al pairs of geoducks that achieve maximum illumination in minimum time. The order of
printing does not matter; however, do not print any pair twice for the same test case. I mitate the sample output
shown below.

Sample Input Output for the Sample Input

6 5 Case 1 Cells Illumnated: 10 M nimum Tine: 5
3 Geoduck IDs: 1 2

-4 -3 CGeoduck IDs: 1 3

11

1-1

00

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem F
A Major Problem

Input File: major.in

In western music, the 12 notes used in musical notation are identified with the capital letters A through G, possibly
followed by asharp '# or flat 'b' character, and are arranged cyclically as shown below. A slash is used to identify
aternate notations of the same note.

C/B# C#/Db D D#/Eb E/Fb F/E# F#/Gb G G#/Ab A A#/Bb B/Cb C/B# ...

Any two adjacent notes in the above list are known as a semitone. Any two notes that have exactly one note
separating them in the above list are known as atone. A major scaleis composed of eight notes; it begins on one of
the above notes and follows the progression tone-tone-semitone-tone-tone-tone-semitone. For example, the major
scales starting on C and Db, respectively, are made up of the following notes:

CDEFGABC
DbEbF Gb AbBb CDb

The following rules also apply to major scales:

1. Thescaewill contain each letter from A to G once and only once, with the exception of the first letter of the
scale, which isrepeated as the last |l etter of the scale.
2. Thescale may not contain a combination of both flat and sharp notes.

The note that begins amajor scaleisreferred to asthe key of the scale. For example, the scales above are the scales
for the mgjor keys of C and Db, respectively. Transposing notes from one scal e to another is a simple matter of
replacing a note in one scale with the note in the corresponding position of another scale. For example, the note Fin
the major key of C would transpose to the note Gb in the major key of Db since both notes occupy the same position
in their respective scales.

Y ou must write a program to transpose notes from one major scale to another.
Input

The input consists of multiple test cases, with one test case per line. Each line starts with a source key, followed by a
target key, and then followed by alist of notes to be transposed from the major scale of the source key to the major
scale of thetarget key. Each list isterminated by asingle asterisk character. All notes on aline and the terminating
asterisk are delimited by a single space.

Thefinal line of theinput contains only a single asterisk which is not to be processed as atest case .

Output

Each test case produces one or more lines of output. If the source and target keys are valid, then the first output line
for each input line shouldread “Tr ansposi ng from X to Y:” whereX isthesourcekey and Y isthetarget
key. If either the source or target key isnot valid alinewhichreads“Key of X/ Y is not a valid nmjor
key”, where X/Y isthe key that is not valid, should be output and the remainder of the input for that line skipped. If
both the source and target key are not valid, report only the source key.

The 2001 ACM Programming Contest World Finals sponsored by IBM

For test cases that contain valid source and target keys, the first output line will be followed by one output line for
each note to be transposed. If the noteisavalid note in the major scale of the source key then the output line should
read“M t ransposes to N’ whereM isthe notein the source key and N isthe corresponding note in the target
key. If theinput note is not avalid note in the major scale of the source key then the output line should read “M i s
not a valid note in the X major scal e” whereM istheinput note and X isthe source key. For
either valid or non-valid notes, the output line should be indented in a consistent manner.

The output data for each input line should be delimited by a single blank line. The format of your output should be
similar to the output shown below.

Sample Input Output for the Sample Input
CDb F* Transposing from C to Db:
Db C Gb * F transposes to Gb

CB# AB*

CDAA#BBb C* Transposing fromDb to C:
A# Bb C * Gb transposes to F

*

Key of B# is not a valid mjor key

Transposing fromC to D
A transposes to B
A# is not a valid note in the C major scale
B transposes to C#
Bb is not a valid note in the C major scale
C transposes to D

Key of A# is not a valid major key

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem G

Fixed Partition Memory Management
Input file: memory.in

A technique used in early multiprogramming operating systems involved partitioning the available primary memory
into anumber of regions with each region having afixed size, different regions potentially having different sizes.
The sum of the sizes of all regions equals the size of the primary memory.

Given aset of programs, it was the task of the operating system to assign the programs to different memory regions,
so that they could be executed concurrently. Thiswas made difficult due to the fact that the execution time of a
program might depend on the amount of memory availableto it. Every program has a minimum space requirement,
but if it isassigned to alarger memory region its execution time might increase or decrease.

In this program, you have to determine optimal assignments of programsto memory regions. Y our program is given
the sizes of the memory regions available for the execution of programs, and for each program a description of how
its running time depends on the amount of memory available toit. Y our program has to find the execution schedule
of the programs that minimizes the average turnaround time for the programs. An execution scheduleisan
assignment of programs to memory regions and times, such that no two programs use the same memory region at
the same time, and no program is assigned to a memory region of size less than its minimum memory requirement.
The turnaround time of the program is the difference between the time when the program was submitted for
execution (which istime zero for all programsin this problem), and the time that the program compl etes execution.

Input

Theinput datawill contain multiple test cases. Each test case begins with aline containing a pair of integersmand
n. The number m specifies the number of regionsinto which primary memory has been partitioned (1 £ m£ 10), and
n specifies the number of programsto be executed (1 £ n £ 50).

The next line contains m positive integers giving the sizes of the mmemory regions. Following thisare n lines,
describing the time-space tradeoffs for each of the n programs. Each line starts with a positive integer k (k £ 10),
followed by k pairs of positive integerss;,t1,S,tz,. .., Stk that satisfy 5 <s.; for 1 £i <k. The minimum space
requirement of the program iss, i.e. it cannot run in apartition of sizeless than this number. If the program runsin
amemory partition of size s, wheres £ s<s.; for somei, then its execution time will bet;. Finally, if the programs
runsin amemory partition of size s, or more, then its execution time will be ty.

A pair of zeroeswill follow theinput for the last test case.

Y ou may assume that each program will executein exactly the time specified for the given region size, regardl ess of
the number of other programsin the system. No program will have amemory requirement larger than that of the
largest memory region.

Output

For each test case, first display the case number (starting with 1 and increasing sequentially). Then print the
minimum average turnaround time for the set of programswith two digits to the right of the decimal point. Follow
this by the description of an execution schedule that achieves this average turnaround time. Display one line for each
program, in the order they were given in the input, that identifies the program number, the region in which it was
executed (numbered in the order given in the input), the time when the program started execution, and the time when
the program completed execution. Follow the format shown in the sample output, and print a blank line after each
test case.

The 2001 ACM Programming Contest World Finals sponsored by IBM

If there are multiple program orderings or assignments to memory regions that yield the same minimum average
turnaround time, give one of the schedules with the minimum average turnaround time.

Sample Input Output for the Sample Input

2 4 Case 1

40 60 Average turnaround tinme = 7.75

1354 Program 1 runs in region 1 fromO to 4
120 3 Program 2 runs in region 2 fromO to 3

1 40 10 Program 3 runs in region 1 from4 to 14
1607 Program 4 runs in region 2 from3 to 10
35

10 20 30 Case 2

2 10 50 12 30 Average turnaround tinme = 35.40

2 10 100 20 25 Program 1 runs in region 2 from25 to 55
125 19 Program 2 runs in region 2 fromO to 25
119 41 Program 3 runs in region 3 fromO to 19
2 10 18 30 42 Program 4 runs in region 3 from19 to 60
00 Program 5 runs in region 1 fromO to 18

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem H

Professor Monotonic’s Networks
Input: sort.in
Professor Monotonic has been experimenting with comparison networks, each of which includes a number of two-

input, two-output comparators. A comparator, asillustrated below, will compare the values on itsinputs, i; andiy,
and place them on the outputs, 0; and 0,, so that 0; £ 0, regardless of the relationship between the input values.

I — —> O
2 ——p — o

A comparison network hasn inputsas,a,,....a, and n outputsby,b,,....b,. Each of the two inputs to a comparator is
either connected to one of the network’ sn inputs or connected to the output of another comparator. Each of the two
outputs from a comparator is either connected to one of the network’ sn outputs or is connected to the input of
another comparator. A graph of the interconnections of comparators must be acyclic. Theillustration below shows a
comparison network with four inputs, four outputs, and five comparators.

ag —p ——P p» b
Comp-1 Comp-3
ay b2
==)
a3 ——Ppp b3
Comp-2 Comp-4 > o,

G —p

In operation, the network’ s inputs are applied and the comparators perform their functions. Of course a comparator
cannot operate until both of itsinputs are available. Assuming a comparator requires one unit of time to operate, this
sample network will require three units of time to produce its outputs. Comp -1 and Comp-2 operate in parallel, as do
Comp-3 and Comp-4. Comp-5 cannot operate until Comp -3 and Comp-4 have completed their work.

Professor M onotonic needs help in determining which proposed comparison networks are also sorting networks, and
how long they will take to perform their task. A sorting network is a comparison network for which the outputs are
monotonically increasing regardless of the input values. The example aboveis a sorting network, since for all
possible input values the output values will have therelationb; £ b, £ bz £ bg.

Input

The professor will provide a description of each comparison network to be examined. Each description will begin
with aline containing values for n (the number of inputs) and k (the number of comparators). These values satisfy
1=n=12and 0=k =150. Thisisfollowed by zero or more non-empty lines, each containing at most 15 pairs of
comparator inputs. The source of the input to each comparator is given by apair of integersi and j. Each of these
specifies either the subscript of anetwork input that isinput to the comparator (thet is, a; or a;), or the corresponding
output of a preceding comparator.

The outputs of acomparator are numbered the same asitsinputs (in other words, if the comparator’ sinputsarei and
j» the corresponding outputs are also labeledi and j). The order in which these pairs appear is significant, and affects
the order in which the comparators operate. If two pairs contain an integer in common, the order of the

The 2001 ACM Programming Contest World Finals sponsored by IBM

corresponding comparatorsin the network is determined by the order of the pairsin the list. For example, consider
the input data for the example shown:

4 5
1 2 3 4 1 3
2 4 2 3

Thisindicates there will be four input values and five comparators in the network. The first comparator (Comp-1)
will receiveitsinput values from network inputsa; and a,. The second comp arator (Comp-2) will receive itsinput
values from network inputsaz and a4. The third comparator (Comp-3) will receiveitsfirst input from the first output
of Comp-1, and will receive its second input from the first output of Comp-2. Similarly, the fourth comparator
(Comp-4) will receiveitsfirst input from the second output of Comp-1, and will receiveits second input from the
second output of Comp-2. Finaly, the fifth comparator (Comp-5) will receiveitsfirst input from the first output of
Comp-4, and will receive its second input from the second output of Comp-3. The outputsb;,b,,...,b, aretaken from
the first output of Comp -3, the first output of Comp -5, the second output of Comp -5, and the second output of
Comp-4, respectively.

A pair of zeroswill follow the input datafor the last network.

Output

For each input case, display the case number (cases are numbered sequentially starting with 1), an indication of
whether the network is a sorting network or not, and the number of time units required for the network to operate
(regardless of whether it is a sorting network or not).

Sample Input Output for the Sample Input
Case 1 is a sorting network and operates in 3 time units.
3 4 1 3 Case 2 is not a sorting network and operates in O time units.
2 3 Case 3 is a sorting network and operates in 3 tinme units.

OFRPWONEF A~
ONWOARANO

The 2001 25th Annual a.CI I I International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem |
A Vexing Problem

Input: vexing.in

The game Vexed isa Tetris-like game created by James McCombe. The game consists of aboard and blocks that are
arranged in stacks. If the space to theimmediate left or right of ablock isopen (that is, it contains no other block nor
any part of the game board “wall”), then that block can be moved in that direction. Only blocksthat are not part of
the game board wall can be moved; “wall” blocks are stationary in all events. After ablock ismoved, if it or any
other block no longer has anything under it, those blocksfall until they land on another block. After all blocks have
landed, if any two or moreidentically-marked pieces are in contact horizontally and/or vertically, then those blocks
areremoved as agroup. If multiple such groups result, then all groups are removed simultaneously. After all such
groups are removed, all blocks again fall to resting positions (again, wall blocks do not move). This might then
result in more groups being removed, more blocks falling, and so on, until a stable stateis reached. The goal of the
game isto remove all the movable blocks from the board.

Consider the simple example shown here. For reference purposes, number the rows of the board from top to bottom
starting with an index value of zero, and number the columns from the left to right, also with a starting index value
of zero. Board positions can be therefore be referenced as ordered (row, column) pairs. By additionally using an “L”
or “R” to refer to aleft or right push respectively, we can aso use the ordered triple (row, column, direction) to
indicate moves.

X X > X
Y &y XY '
XY XY XY x Iy |
I
(A) (B) © (D)
X X >
|
X X [> X | X
|
(E) F ©) (H)

In (A) we have two choices for moves as shown in (B). These moves are (0,1,R) and (1,3,L) using the identification
scheme defined above. Note that if wetry (0,1,R), the resulting board state as shown in (C) is adead end; no further
moves are possible and blocks still remain on the board. If we choose the other move, however, the blocks at (1,2)
and (2,2) are now in vertical contact, so they form agroup that should be removed as shown by (D). The resulting
board state is shown in (E), leaving the two moves shown by (F). Note that either move would eventually allow a
solution, but (0,1,R) leadsto atwo move solution, whereas (2,1,R) leads to athree move solution. (G) and (H) show
thefinal stepsif we choose (0,1,R).

There are often many ways to solve a particular Vexed puzzle. For this problem, only solutions with a minimum
number of moves are of interest. The minimum number of moves can sometimes be surprising. Consider another
example.

The 2001 ACM Programming Contest World Finals sponsored by IBM

. - - N _
Y _ X | [| [|
X _ Y | [| [|
z |5 [z | X z B X | [B
X X |z X X |z "1 Iz 2 B
Y z | x Y1z z Ix vl XX X]
X |z x |z X X
(A) ®) © (D)

In this example there are ten possible first moves, and there arein fact several waysto arrive at asolution. Thereis
only onemovein (A), however, that allows us to achieve a solution with the minimum number of moves. Observe
the sequence of events shown if (3,1,R) is chosen as the first move.

Input

Theinput will consist of several puzzles. Each begins with aline containing integers giving the number of rows

(NR) and columns (NC) in the puzzle, and a string of characters (terminated by the end of line) giving the name of
the puzzle; these items are separated by one or more spaces. Thislineis followed by an NR by NC array of
characters defining the puzzleitself; an end of line will follow the last character in each row. NR and NC will each

be no larger than 9. The “outer walls” (in addition to “inner wall” blocks) on the I eft, right, and bottom will always
be included as part of the puzzle input, and are represented as hash mark (#) characters. Moveable blocks are
represented by capital letters which indicate the marking on the block. To avoid possible ambiguities, open spacesin
the puzzle are represented in the input by a hyphen (-) rather than by spaces. Other than the outer walls, wall blocks
and moveable blocks may be arranged in any stable pattern. Every input puzzle is guaranteed to have a solution
requiring 11 or fewer moves.

A puzzle with zero dimensions marks the end of the input and should not be processed.

Output
For each input puzzle, display a minimum length solution formatted as shown in the sample output. In the event that
there are multiple solutions of minimum length, display one of them.

Sample Input Output for the Sample Input

4 5 SAMPLE-01 SAMPLE-01: M ni mum solution length = 2
HA- - # (B,1,3,L) (A 0,1,R

##- BH#

#AB#H# SAMPLE-02: M ni mum solution length = 9
Hit 1 (Y,0,3,R) (Z,4,5L) (X1,3,R (Z,1,2,R
6 7 SAMPLE-02 (2,1,3,R (X 3,4,R (X3,2,R (X4,5,L)
#--Y--# (X, 1,5,L)

#- ZX- X#

#- #i- ##

#-XZ--#

HAHHYZH

HeHHH IR

0 0 END

